Appendix 6.10 Core ocean statistics for key ecosystem types


Table 42. Coral Reef ecosystem core statistics

 

Ecosystem Type: Coral Reefs

Category

Statistic

Ocean Assets

 

Condition

Overall condition statistics

Biodiversity

Coral coverage (satellite data)

 

Hermatypic coral abundance (in-situ)

 

Hermatypic coral diversity (in-situ)

Ecosystem Fitness

Production: Respiration Ratio

 

Net Accretion Rate

 

Total Alkalinity/DIC Slope

 

Reef water flow velocity

Biogeochemical Cycling

Nitrate concentration

 

Total Alkalinity

 

Offshore: Inshore DIC ratio

 

Aragonite Saturation State

 

Dissolved Oxygen

 

pH (total scale)

Physiochemical Quality

Temperature

 

Mean Sea Level

 

Salinity

Greenhouse Gas Retention

Dissolved Inorganic Nutrient Concentration

 

Carbon Dioxide Flux

 

Coral coverage (satellite data)

 

Sediment: Hard Coral Ratio

Stock

Overall stock statistics

Ecosystem Extent

Coral coverage (satellite data)

Total reef area (satellite data)

Stock of Natural Aquatic Resources

Stocks of Subsistence Fish

(Vertebrates)

Stocks of Recreational Fish

 

Stocks of Commercial Fish

 

Stocks of Ornamental Aquarium Fish

Stock of Natural Aquatic Resources

Stocks of  Echinoderms

(Invertebrates, Algae, Plants)

Stocks of Gastropods

 

Stocks of Ornamental Aquarium Coral for Export

 

Stocks of Bivalves

Stock of Cultivated Aquatic Resources

Gross Pelagic Fish Reared

 (Vertebrates)

Gross Reef Fish Reared

Stock of Cultivated Aquatic Resources

Gross Coral Cultured

(Invertebrates)

Gross Algae Grown

Stock of Abiotic Resources

Calcium Available for Harvest

 

Minerals/Oils Available for Extraction

Ocean Services

 

Regulating

Conditions affecting flow of service

Greenhouse Gas Sequestration

Coastal geomorphology

 

Sediment deposition rate

 

Light availability

 

Coral Cover

Coastal Protection

Coral Species

 

Reef length/distance

 

Water depth

 

Mean Wave Height

 

Storm Frequency

Erosion Control

Sea Level Rise Rate

 

Terrestrial Sediment Deposition Rate

 

Reef slope to lagoon sediment deposition rate

Water Purification

Sediment Organic Carbon:Nitrogen Ratio

 

Benthic coral:algae cover ratio

Nutrient Cycling

Benthic algae cover

 

Sediment cover

 

Ratio of Nitrate:Ammonium

Waste Remediation

Sediment Organic Carbon Content

 

Sediment Organic Nitrogen Content

 

Plastic Pollutant Load

 

Terrestrial Runoff Rate

Pollutant Remediation

Fertilizer Concentrations

 

POC/PON Concentrations

 

Ciguatera Presence

Provisioning

Conditions affecting flow of services/economic values

Maintenance of Fisheries

Fish catch and value

 

Coral Cover

Cultivated Resources Extracted

Value of Cultivated Vertebrates

 

Value of Cultivated Invertebrates

Raw Materials Extracted

Value of Coral Sand Extracted

 

Value of Guano Extracted

Cultural

Service levels and values

Tourism/Recreation

Swimmable Area (Lagoon Size)

 

Underwater Tourism

 

Nautical Tourism

 

Surfing/Recreational Tourism

Education/Research

Net Expense on Research

 

Net Expense on Education

Religious/Spiritual/Indigenous

Cultural Heritage Area

Ocean Governance

Activities, status, expenditures and value statistics

Regulation

License Fees/Taxes

 

Taxes on Cultivated Resources

 

Taxes on Natural Resources

Enforcement

Permit Income

 

Penalties/Fines

Restoration/Conservation

Area Conserved (no take)

 

Area Conserved (recreational take only)

 

Biomass Restocked (vertebrates)

 

Biomass Restocked (invertebrates)

Mitigation

Length of Engineered Coastal Barriers

 

Area Geoengineered

Gross value added by sector

Gross value added of all Ocean Services by sector

Expenditure

Expenditures on environmental protection and maintenance

Table 43. Mangrove ecosystem core statistics

 

Ecosystem Type: Mangroves

Category

Statistic

Ocean Assets

 

Condition

Overall condition statistics

Biodiversity

Enhanced Vegetation Index (MODIS Imaging)

 

Percent Tree Cover (MODIS Imaging)

 

Phytoplankton Abundance/Diversity

Ecosystem Fitness

Percent Tree Cover

 

Leaf Area Index

 

Chlorophyll Absorption (Hyperspectral Imaging)

 

Soil Carbon

Biogeochemical Cycling

Soil Nitrogen

 

Turbidity

 

Sediment Accumulation:Sea Level Rise

 

Particulate/Dissolved Organic C:N

 

Dissolved Oxygen

 

Soil and Water pH

Physiochemical Quality

Mean Sea Level

 

Tidal Regime

 

Salinity

Greenhouse Gas Retention

Methane Flux

 

Carbon Dioxide Flux

 

Sedimentation Rate (Mud Content)

 

Canopy Area Cover (Landsat Images)

Stock

Overall stock statistics

Ecosystem Extent

Percent Tree Cover (MODIS Imaging)

Total Mangrove Area (satellite imaging)

Stock of Natural Aquatic Resources

Stocks of planktivorous fish

(Vertebrates)

Stocks of piscivorous fish

 

Bird abundance/diversity

Stock of Natural Aquatic Resources

Gross Mangrove Removal

(Invertebrates)

Macrobenthic Community (Sponges, polychaetes)

Stock of Cultivated Aquatic Resources

Gross Piscivorous Fish Grown

 (Vertebrates)

Gross Planktivorous Fish Grown

Stock of Cultivated Aquatic Resources

Oyster Aquaculture

(Invertebrates)

Shrimp Aquaculture

Stock of Abiotic Resources

Charcoal Available for Harvest

 

Fuelwood Available for Harvest

Ocean Services (Flows to the Economy)

 

Regulating

Conditions affecting flow of service

Greenhouse Gas Sequestration

Coastal geomorphology

 

Sediment deposition rate

 

Vegetation Type/Density

Coastal Protection

Sediment Elevation Rate

 

Mangrove Mean Age

 

Mean Sea Level

 

Tidal Height

 

Geomorphic Settings

Erosion Control

Distance to Human Settlement

 

Sea level rise

 

Vegetation Type/Density

Water Purification

Mangrove Cover/Distance

 

Sediment Quality

Nutrient Cycling

Nitrification Rate

 

Biological Oxygen Demand

 

Sulfate Reduction Rate

Waste Remediation

Mangrove quality and area

 

Mangrove Root Length (aerial exposure)

 

Adjacent Farming Development

 

Shrimp Pond Development

Pollutant Remediation

Fertilizer Concentrations

 

Dissolved Nutrient Concentrations

 

Trace Metal Concentrations

Provisioning

Conditions affecting flow of service/economic values

Maintenance of Fisheries

Fish Catch and value

 

Time Spent Fishing

 

Shrimp/Shrimp Fry Caught

Cultivated Resources Extracted

Value of Cultivated Vertebrates

 

Value of Cultivated Invertebrates

Raw Materials Extracted

Fuelwood Harvested and Value

 

Charcoal Harvested and Value

Cultural

Service levels and values

Tourism/Recreation

Mangrove Area/Lagoon Size

 

Distance to Human Settlement

 

Tourism Generated Income

 

Recreation Generated Income

Education/Research

Net Expense on Research

 

Net Expense on Education

 

Education Level

Religious/Spiritual/Indigenous

Cultural Heritage Area

Ocean Governance

Activities, status, expenditures and value statistics

Regulation

License Fees/Taxes

 

Taxes on Cultivated Resources

 

Taxes on Natural Resources

Enforcement

Permit Income

 

Penalties/Fines

Restoration/Conservation

Area Conserved (no take)

 

Distance to Industry/Ports

 

Biomass Restocked

 

Post-restoration care

Mitigation

Length of Engineered Coastal Barriers

 

Area Geoengineered

Gross value added by sector

Gross value added of all Ocean Services by sector

Expenditure

Expenditures on environmental protection and maintenance

Table 44. Kelp Forest ecosystem core statistics

 

Ecosystem Type: Kelp Forest

Category

Statistic

Ocean Assets

 

Condition

Overall condition statistics

Biodiversity

Macroalgae Species Richness

 

Kelp Canopy Biomass (in-situ)

 

Benthic Macroinvertebrate Diversity

Ecosystem Fitness

Availability of Drift Algae

 

Turf Algae Abundance

 

Urchin Grazing Intensity

 

Ratio of Invasive: Natural kelp species

 

Juvenile Kelp Recruitment Rate

Biogeochemical Cycling

Nitrate Concentration

 

Ammonium Concentration

 

Kelp Growth Rate

 

Dissolved Oxygen Concentration

 

C13 Stable Isotopes

 

N15 Stable Isotopes

Physiochemical Quality

Temperature

 

Light availability

 

Salinity

Greenhouse Gas Retention

Light availability

 

Carbon Storage

 

Kelp Forest Biomass

Stock

Overall stock statistics

Ecosystem Extent

Kelp Canopy Cover (in-situ)

 

Total Kelp Forest Area (Satellite)

Stock of Natural Aquatic Resources

Fish stocks

(Vertebrates)

Stock of Natural Aquatic Resources

Urchin abundance

(Invertebrates)

Abalone abundance

 

Lobster abundance

Stock of Cultivated Aquatic Resources

Gross Piscivorous Fish Grown

 (Vertebrates)

Gross Planktivorous Fish Grown

Stock of Cultivated Aquatic Resources

Gross Shellfish grown

(Invertebrates)

Gross Macroalgae Available for Harvested

Stock of Abiotic Resources

Alginate Available for Extraction

Ocean Services (Flows to the Economy)

 

Regulating

Conditions affecting flow of service

Greenhouse Gas Sequestration

Light Availability

 

Kelp Biomass

 

Kelp Canopy Cover

Coastal Protection

Coastal geomorphology

 

Kelp Canopy Density

 

Wave fetch

 

Abundance of Urchins (and removed)

 

Storm Frequency

Erosion Control

Localized Hydrodynamics

 

Distance to Metropolitan Area

 

Kelp Canopy Cover

Water Purification

Kelp/Macroalgae Abundance

 

Light Availability

Nutrient Cycling

Kelp Growth Rate

 

Standing Stock of Carbon

 

Light availability

Waste Remediation

Ratio of Turf:Macroalgae

 

Kelp Canopy Cover

Pollutant Remediation

Fertilizer Concentrations

 

Fish Farm Runoff

Provisioning

Conditions affecting flow of service/economic values

Maintenance of Fisheries

Fish Catch and Value

 

Catch Per Unit Effort

 

Kelp Cover

Cultivated Resources Extracted

Value of Cultivated Vertebrates

 

Value of Cultivated Macroalgae

Raw Materials Extracted

Alginate Extracted

Cultural

Service levels and values

Tourism/Recreation

Kelp Persistence

 

Scuba Diving Frequency

 

Spatial coverage of Marine Protected Area

 

Recreational Fisheries

Education/Research

Net Expense on Research

 

Net Expense on Education

Religious/Spiritual/Indigenous

Cultural Heritage Area

Ocean Governance

Activities, status, expenditures and value statistics

Regulation

License Fees/Taxes

 

Taxes on Cultivated Resources

 

Taxes on Natural Resources

Enforcement

Permit Income

 

Penalties/Fines

Restoration/Conservation

Transplant costs

 

Invasive Species Abundance

 

Fish Biomass

 

Number/Size of Marine Protected Areas

Mitigation

Area/Abundance of Urchins Removed

 

Area Restored with Kelp

Gross value added by sector

Gross value added of all Ocean Services by sector

Expenditure

Expenditures on environmental protection and maintenance

Table 45. Seagrass ecosystem core statistics

 

Ecosystem Type: Seagrasses

Category

Statistic

Ocean Assets

 

Condition

Overall condition measures

Biodiversity

Seagrass cover (Satellite imaging)

 

Seagrass diversity/abundance (benthic surveys)

 

Megafauna Abundance Counts (ex: Dugongs)

Ecosystem Fitness

Vegetation Type (Species Diversity)

 

Seagrass Density (per m2)

 

Sedimentation Rate

Biogeochemical Cycling

Sediment Redox Potential (mV)

 

Dissolved Organic Carbon Release Rate

 

Inundation Depth

 

C:N Sediment ratios

 

Production: Respiration Ratio (per m2)

Physiochemical Quality

Water Temperature

 

Light Availability

 

Salinity

Greenhouse Gas Retention

Nitrification Rate

 

Carbon Dioxide Flux

 

Total Water Storage (per m2)

 

Total Organic Carbon (per m2)

Stock

Overall stock statistics

Ecosystem Extent

Seagrass/Vegetation Cover (satellite)

Total Area of Saline High Tide Extent (satellite)

Stock of Natural Aquatic Resources

Artisanal Fishery Catch

(Vertebrates)

Commercial Fishery Catch

 

Recreational Fish Catch

Stock of Natural Aquatic Resources

Gross Shellfish Harvested

(Invertebrates)

Gross Shrimp Harvested

 

Gross Seagrass Harvested

Stock of Cultivated Aquatic Resources

Gross Planktivorous Fish Grown

 (Vertebrates)

 

Stock of Cultivated Aquatic Resources

Gross Shellfish Grown

(Invertebrates)

Gross Shrimp Grown

Stock of Abiotic Resources

Agricultural Services

Ocean Services (Flows to the Economy)

 

Regulating

Conditions affecting flow of service

Greenhouse Gas Sequestration

Coastal geomorphology

 

Sediment deposition rate

 

Vegetation Cover

 

Seagrass Blade Length

Coastal Protection

Sedimentation Rate

 

Tidal Range

 

Water Table Height

 

Rooted Plant Cover

 

Storm Frequency

Erosion Control

Fluvial sediment deposition

 

Sea level rise

 

Growth Form: Submerged

Water Purification

Aquatic Plant Leaf Size

 

Sediment/Nutrient Load

 

Root Type

Nutrient Cycling

Nitrification Rate

 

Biological Oxygen Demand

 

Sulphate Reduction Rate

Waste Remediation

Sediment Organic Carbon Content

 

Sediment Organic Nitrogen Content

 

Fish/Shrimp Farm Wastewater Discharge Rate

Pollutant Remediation

Terrestrial Runoff Rate

 

Fertilizer Concentrations

Provisioning

Conditions affecting flow of service/economic value

Maintenance of Fisheries

Prey Fish Abundance

 

Hydrodynamic Conditions

 

Primary Productivity Rate (Chl a)

 

Vegetation Cover

Cultivated Resources Extracted

Value of Cultivated Vertebrates

 

Value of Cultivated Invertebrates, Algae, Plants

Raw Materials Extracted

Agricultural Products

Cultural

Service levels and values

Tourism/Recreation

Prey Fish Abundance

 

Hydrodynamic Conditions

 

Primary Productivity Rate (Chl a)

 

Vegetation Cover

 

Value of Cultivated Vertebrates

Education/Research

Value of Cultivated Invertebrates, Algae, Plants

 

Agricultural Products

 

Prey Fish Abundance

Religious/Spiritual/Indigenous

 

Ocean Governance

Activities, status, expenditures and value statistics

Regulation

License Fees/Taxes

 

Taxes on Cultivated Resources

 

Taxes on Natural Resources

Enforcement

Permit Income

 

Penalties/Fines

Restoration/Conservation

Area Conserved (no take)

 

Area Conserved (recreational take only)

 

Biomass Restocked (vertebrates)

 

Biomass Restocked (invertebrates)

Mitigation

Length of Engineered Coastal Barriers

 

Area Geoengineered

Gross value added by sector

Gross value added of all Ocean Services by sector

Expenditure

Expenditures on environmental protection and maintenance

Table 46. Salt Marsh and Estuary ecosystem core statistics

Ecosystem Type: Salt Marshes and Estuaries

Category

Statistic

Ocean Assets

 

Condition

Overall condition measures

Biodiversity

Seagrass/Vegetation Cover

 

Prey Fish Abundance

 

Healthy Predator Populations

Ecosystem Fitness

Vegetation Type

 

Seagrass Abundance/Cover

 

Plant Height

Biogeochemical Cycling

Sediment Redox Potential

 

Hypersalinity

 

Inundation Depth

 

C:N Sediment ratios

 

Submerged Plant Growth Form

Physiochemical Quality

Water Temperature

 

Light Availability

 

Salinity

Greenhouse Gas Retention

Nitrification Rate

 

Carbon Dioxide Flux

 

Total Water Storage

 

Total Organic Carbon

Stock

Overall stock statistics

Ecosystem Extent

Seagrass/Vegetation Cover

Total Area of Saline High Tide Extent (satellite)

Stock of Natural Aquatic Resources

Stock Available for Artisinal Fishery

(Vertebrates)

Stock of Commercial Fish

 

Stock of Recreational Fish

Stock of Natural Aquatic Resources

Stock of Shellfish Available for Harvest

(Invertebrates)

Stock of Shrimp Available for Harvest

 

Stock of Crab Available for Harvest

Stock of Cultivated Aquatic Resources

Gross Planktivorous Fish Grown

 (Vertebrates)

 

Stock of Cultivated Aquatic Resources

Gross Shellfish Grown

(Invertebrates)

 

Stock of Abiotic Resources

Minerals/Fertilizers Available for Extraction

Ocean Services (Flows to the Economy)

 

Regulating

Conditions affecting flow of service

Greenhouse Gas Sequestration

Coastal geomorphology

 

Sediment deposition rate

 

Vegetation Cover

 

Aquatic Plant Leaf Size

Coastal Protection

Coastal geomorphology

 

Tidal Range

 

Water Table Height

 

Rooted Plant Cover

 

Storm Frequency

Erosion Control

Fluvial sediment deposition

 

Sea level rise

 

Growth Form: Submerged

Water Purification

Aquatic Plant Leaf Size

 

Sediment/Nutrient Load

 

Root Type

Nutrient Cycling

Nitrification Rate

 

Biological Oxygen Demand

 

Sulfate Reduction Rate

Waste Remediation

Sediment Organic Carbon Content

 

Sediment Organic Nitrogen Content

 

Terrestrial Runoff Rate

Pollutant Remediation

Fertilizer Concentrations

 

Sewage Waste Concentrations

Provisioning

Conditions affecting flow of service/economic value

Maintenance of Fisheries

Prey Fish Abundance

 

Hydrodynamic Conditions

 

Primary Productivity Rate (Chl a)

 

Vegetation Cover

Cultivated Resources Extracted

Value of Cultivated Vertebrates

 

Value of Cultivated Invertebrates

Raw Materials Extracted

Agricultural Products Extracted

Cultural

Service levels and values

Tourism/Recreation

Accessible Area for Recreation

 

Water Quality

 

Marine Mammal Tourism

 

Abundance of Visually attractive flora

 

Recreation Generated Income

Education/Research

Net Expense on Research

 

Net Expense on Education

 

Habitat quality and area

Religious/Spiritual/Indigenous

Cultural Heritage Area

Ocean Governance

Activities, status, expenditures and value statistics

Regulation

License Fees/Taxes

 

Taxes on Cultivated Resources

 

Taxes on Natural Resources

Enforcement

Permit Income

 

Penalties/Fines

Restoration/Conservation

Area Conserved (no take)

 

Area Conserved (recreational take only)

 

Biomass Restocked (vertebrates)

 

Biomass Restocked (invertebrates)

Mitigation

Length of Engineered Coastal Barriers

 

Area Geoengineered

Gross value added by sector

Gross value added of all Ocean Services by sector

Expenditure

Expenditures on environmental protection and maintenance

 

Table 47. Sediment ecosystem core statistics

 

Ecosystem Type: Sediment

Category

Statistic

Ocean Assets

 

Condition

Overall condition statistics

Biodiversity

Benthic Microbial Community

 

Fish Diversity

 

Infaunal Invertebrate Diversity

Ecosystem Fitness

Production: Respiration Ratio

 

Sulfate Reduction Rate

 

Sediment Oxygen Profile

 

Nitrification Rate

Biogeochemical Cycling

Nitrate Concentration

 

Sulfate Concentration

 

Sediment Redox Potential

 

Particulate/Dissolved Organic C:N

 

Dissolved Oxygen

 

pH (total scale)

Physiochemical Quality

Water Temperature

 

Salinity

 

Mean Sea Level

Greenhouse Gas Retention

Benthic Production:Respiration Ratio

 

Sediment Permeability

 

Light Availability/Turbidity

 

Average Sea State

Stock

Overall stock statistics

Ecosystem Extent

Total Area of Soft Bottom/Sediment (Satellite)

Stock of Natural Aquatic Resources

Gross benthal fish stock

(Vertebrates)

Gross infaunal fish stock

Stock of Natural Aquatic Resources

Gross Sea Cucumber Stock

(Invertebrates)

Gross Shellfish Stock

Stock of Cultivated Aquatic Resources

Gross Piscivorous Fish Grown

 (Vertebrates)

Gross Planktivorous Fish Grown

Stock of Cultivated Aquatic Resources

Gross Shellfish grown

(Invertebrates)

 

Stock of Abiotic Resources

Sand Available for Harvest

Ocean Services (Flows to the Economy)

 

Regulating

Conditions affecting flow of service

Greenhouse Gas Sequestration

Coastal geomorphology

 

Sediment deposition rate

 

Sediment Permeability

 

Light availability

Coastal Protection

Coastal geomorphology

 

Tidal Range

 

Water Table Height

 

Storm Frequency

Erosion Control

Fluvial sediment deposition

 

Sea level rise

 

Area of physical structure

Water Purification

Microphytobenthic composition

Nutrient Cycling

Nitrification Rate

 

Biological Oxygen Demand

 

Sulfate Reduction Rate

Waste Remediation

Sediment Organic Carbon Content

 

Sediment Organic Nitrogen Content

 

Plastic Pollutant Load

 

Terrestrial Runoff Rate

Pollutant Remediation

Fertilizer Concentrations

 

PCB Concentrations

 

Trace Metal Concentrations

Provisioning

Condition affecting flows of service/economic values

Maintenance of Fisheries

Catch Rate and value

 

Catch Per Unit Effort

Cultivated Resources Extracted

Value of Cultivated Vertebrates

 

Value of Cultivated Invertebrates

Raw Materials Extracted

Quantity and Value of Sand Extracted

Cultural

Service level and values

Tourism/Recreation

Accessible Area for Recreation

 

Water Quality

 

Tourism Generated Income

 

Recreation Generated Income

Education/Research

Net Expense on Research

 

Net Expense on Education

 

Habitat quality and area

Religious/Spiritual/Indigenous

Cultural Heritage Area

Ocean Governance

Activities, status, expenditures and value statistics

Regulation

License Fees/Taxes

 

Taxes on Cultivated Resources

 

Taxes on Natural Resources

Enforcement

Permit Income

 

Penalties/Fines

Restoration/Conservation

Area Conserved (no take)

 

Area Conserved (recreational take only)

 

Biomass Restocked (vertebrates)

 

Biomass Restocked (invertebrates)

Mitigation

Length of Engineered Coastal Barriers

 

Area Geoengineered

Gross value added by sector

Gross value added of all Ocean Services by sector

Expenditure

Expenditures on environmental protection and maintenance

Table 48. Open Ocean ecosystem core statistics

 

Ecosystem Type: Open Ocean

Category

Statistic

Ocean Assets

 

Condition

Overall condition statistics

Biodiversity

Megafauna Abundance/Diversity

 

Fish Diversity

 

Plankton abundance

Ecosystem Fitness

Chlorophyll a concentration

 

Biological Pump Rate

 

Turbidity/Light availability

Biogeochemical Cycling

Thermocline

 

Pycnocline

 

Vertical Profile: Oxygen

 

Vertical Profile: Nitrate

 

Vertical Profile: pH

 

Vertical Profile: DIC

Physiochemical Quality

Sea Surface Temperature

 

Sea Surface Salinity

 

Mean Sea Level

Greenhouse Gas Retention

Plankton Abundance

 

Chlorophyll a Concentration

 

Dissolved Inorganic Carbon Profile

 

Average Sea State

Stock

Overall stock statistics

Ecosystem Extent

Total area defined as open ocean (satellite)

Stock of Natural Aquatic Resources

Gross pelagic fish catch

(Vertebrates)

Gross piscivorous fish catch

Stock of Natural Aquatic Resources

Gross shrimp catch

(Invertebrates)

Gross squid catch

Stock of Cultivated Aquatic Resources

Gross Pelagic Fish Grown

 (Vertebrates)

 

Stock of Cultivated Aquatic Resources

Gross Shellfish Grown

(Invertebrates)

Gross Shrimp Grown

Stock of Abiotic Resources

Oil/Petroleum Harvested

 

Energy Generated

Ocean Services (Flows to the Economy)

 

Regulating

Conditions affecting flow of services

Greenhouse Gas Sequestration

Average Sea State

 

Chlorophyll a (Satellite)

 

SST (Satellite)

Coastal Protection

Mean Sea Level

 

Hydrodynamic Barrier Area

Erosion Control

Water Column Sedimentation Rates

Water Purification

Plankton Abundance

 

Chlorophyll a Concentration

Nutrient Cycling

Biological Pump Rate

 

Chlorophyll a Concentration (satellite)

 

Dissolved Inorganic Carbon Profile

Waste Remediation

Water Column PON

 

Water Column POC

 

Plastic Pollutant Load

 

Terrestrial Runoff Rate

Pollutant Remediation

Fertilizer Concentrations

 

Microplastic Concentrations

 

Large Plastic Concentrations

Provisioning

Conditions affecting flow of services/economic values

Maintenance of Fisheries

Fish Catch and Value

 

Catch Per Unit Effort

Cultivated Resources Extracted

Value of Cultivated Vertebrates

 

Value of Cultivated Invertebrates

Raw Materials Extracted

Energy Generated

 

Oil/Petroleum Extracted

Cultural

Service levels and values

Tourism/Recreation

Accessible Area for Recreation

 

Water Quality

 

Tourism Generated Income

 

Recreation Generated Income

Education/Research

Net Expense on Research

 

Net Expense on Education

Religious/Spiritual/Indigenous

Cultural Heritage Area

Ocean Governance

Activities, status, expenditures and value statistics

Regulation

License Fees/Taxes

 

Taxes on Cultivated Resources

 

Taxes on Natural Resources

Enforcement

Permit Income

 

Penalties/Fines

Restoration/Conservation

Area Conserved (no take)

 

Area Conserved (recreational take only)

 

Biomass Restocked (vertebrates)

 

Biomass Restocked (invertebrates)

Mitigation

Length of Engineered Coastal Barriers

 

Area of Hydrodynamic Barriers

Gross value added by sector

Gross value added of all Ocean Services by sector

References for Core Ocean Statistics

Coral Reef Ecosystems

Ahmed, M., Chong, C. K., & Cesar, H. (2005). Economic Valuation and Policy Priorities for Sustainable Management of Coral Reefs. https://www.worldfishcenter.org/content/economic-valuation-and-policy-priorities-sustainable-management-coral-reefs

Andersson, A. J., MacKenzie, F. T., & Lerman, A. (2005). Coastal ocean and carbonate systems in the high CO2 world of the anthropocene. American Journal of Science, 305(9), 875–918. https://doi.org/10.2475/ajs.305.9.875

Atkinson, M. J. (2011). Biogeochemistry of nutrients. In Coral Reefs: An Ecosystem in Transition (pp. 199–206). Springer Netherlands. https://doi.org/10.1007/978-94-007-0114-4_13

Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. In Ecological Monographs (Vol. 81, Issue 2, pp. 169–193). John Wiley & Sons, Ltd. https://doi.org/10.1890/10-1510.1

Barton, J. A., Willis, B. L., & Hutson, K. S. (2017). Coral propagation: a review of techniques for ornamental trade and reef restoration. Reviews in Aquaculture, 9(3), 238–256. https://doi.org/10.1111/raq.12135

Bates, N. R. (2017). Twenty years of marine carbon cycle observations at Devils Hole Bermuda provide insights into seasonal hypoxia, coral reef calcification, and ocean acidification. Frontiers in Marine Science, 4(FEB), 36. https://doi.org/10.3389/fmars.2017.00036

Beck, M. W., Losada, I. J., Menéndez, P., Reguero, B. G., Díaz-Simal, P., & Fernández, F. (2018). The global flood protection savings provided by coral reefs. Nature Communications, 9(1), 1–9. https://doi.org/10.1038/s41467-018-04568-z

Bell, P. R. F. (1992). Eutrophication and coral reefs-some examples in the Great Barrier Reef lagoon. Water Research, 26(5), 553–568. https://doi.org/10.1016/0043-1354(92)90228-V

Brander, L. M., Van Beukering, P., & Cesar, H. S. J. (2007). The recreational value of coral reefs: A meta-analysis. Ecological Economics, 63(1), 209–218. https://doi.org/10.1016/j.ecolecon.2006.11.002

Brown, B. E., & Dunne, R. P. (2015). Coral Bleaching: The Roles of Sea Temperature and Solar Radiation. In Diseases of Coral (pp. 266–283). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118828502.ch18

Burke, L., Greenhalgh, S., Prager, D., & Cooper, E. (2008). Coastal capital: economic valuation of coral reefs in Tobago and St. Lucia. Coastal Capital: Economic Valuation of Coral Reefs in Tobago and St. Lucia., 66. http://www.wri.org/publication/coastal-capital

Cesar, H., Burke, L., & Pet-soede, L. (2003). The Economics of Worldwide Coral Reef Degradation. Cesar Environmental Economics Consulting, Arnhem, and WWF-Netherlands, 14, 23. http://eprints.eriub.org/48/

Cesar, H. S. J., & van Beukering, P. J. H. (2004). Economic valuation of the coral reefs of Hawai’i. Pacific Science, 58(2), 231–242. https://doi.org/10.1353/psc.2004.0014

Chan, N. C. S., & Connolly, S. R. (2013). Sensitivity of coral calcification to ocean acidification: a meta-analysis. Global Change Biology, 19(1), 282–290. https://doi.org/10.1111/gcb.12011

Cinner, J. E., Huchery, C., MacNeil, M. A., Graham, N. A. J., McClanahan, T. R., Maina, J., Maire, E., Kittinger, J. N., Hicks, C. C., Mora, C., Allison, E. H., D’Agata, S., Hoey, A., Feary, D. A., Crowder, L., Williams, I. D., Kulbicki, M., Vigliola, L., Wantiez, L., … Mouillot, D. (2016). Bright spots among the world’s coral reefs. Nature, 535(7612), 416–419. https://doi.org/10.1038/nature18607

Comeau, S., Edmunds, P. J., Lantz, C. A., & Carpenter, R. C. (2014). Water flow modulates the response of coral reef communities to ocean acidification. Scientific Reports, 4(1), 6681. https://doi.org/10.1038/srep06681

Cyronak, T., Andersson, A. J., Langdon, C., Albright, R., Bates, N. R., Caldeira, K., Carlton, R., Corredor, J. E., Dunbar, R. B., Enochs, I., Erez, J., Eyre, B. D., Gattuso, J.-P., Gledhill, D., Kayanne, H., Kline, D. I., Koweek, D. A., Lantz, C., Lazar, B., … Yamamoto, S. (2018). Taking the metabolic pulse of the world’s coral reefs. PloS One, 13(1), e0190872. https://doi.org/10.1371/journal.pone.0190872

De’Ath, G., Fabricius, K. E., Sweatman, H., & Puotinen, M. (2012). The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences of the United States of America, 109(44), 17995–17999. https://doi.org/10.1073/pnas.1208909109

Dennison, W. C., & Barnes, D. J. (1988). Effect of water motion on coral photosynthesis and calcification. Journal of Experimental Marine Biology and Ecology, 115(1), 67–77. https://doi.org/10.1016/0022-0981(88)90190-6

Drupp, P., De Carlo, E. H., Mackenzie, F. T., Bienfang, P., & Sabine, C. L. (2011). Nutrient Inputs, Phytoplankton Response, and CO2 Variations in a Semi-Enclosed Subtropical Embayment, Kaneohe Bay, Hawaii. Aquatic Geochemistry, 17(4–5), 473–498. https://doi.org/10.1007/s10498-010-9115-y

Edinger, E. N., Jompa, J., Limmon, G. V, Widjatmoko, W., & Risk, M. J. (1998). Reef degradation and coral biodiversity in Indonesia: Effects of land-based pollution, destructive fishing practices and changes over time. Marine Pollution Bulletin, 36(8), 617–630. https://doi.org/10.1016/S0025-326X(98)00047-2

Eyre, B. D., Cyronak, T., Drupp, P., De Carlo, E. H., Sachs, J. P., & Andersson, A. J. (2018). Coral reefs will transition to net dissolving before end of century. Science (New York, N.Y.), 359(6378), 908–911. https://doi.org/10.1126/science.aao1118

Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. In Marine Pollution Bulletin (Vol. 50, Issue 2, pp. 125–146). https://doi.org/10.1016/j.marpolbul.2004.11.028

Frankignoulle, M., Canon, C., & Gattuso, J.-P. (1994). Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO 2. Limnology and Oceanography, 39(2), 458–462. https://doi.org/10.4319/lo.1994.39.2.0458

Gattuso, J. P., Pichon, M., Delesalle, B., Canon, C., & Frankignoulle, M. (1996). Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecology Progress Series, 145(1–3), 109–121. https://doi.org/10.3354/meps145109

Haas, A. F., Nelson, C. E., Kelly, L. W., Carlson, C. A., Rohwer, F., Leichter, J. J., Wyatt, A., & Smith, J. E. (2011). Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE, 6(11), e27973. https://doi.org/10.1371/journal.pone.0027973

Hochberg, E. J. (2011). Remote sensing of coral reef processes. In Coral Reefs: An Ecosystem in Transition (pp. 25–35). Springer Netherlands. https://doi.org/10.1007/978-94-007-0114-4_3

Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., de Crook, E., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., & Martz, T. R. (2011). High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE, 6(12), e28983. https://doi.org/10.1371/journal.pone.0028983

Kinsey, D. W., & Davies, P. J. (1979). Carbon turnover, calcification and growth in coral reefs. Studies in Environmental Science, 3(C), 131–162. https://doi.org/10.1016/S0166-1116(08)71057-4

Kittinger, J. N., Bambico, T. M., Minton, D., Miller, A., Mejia, M., Kalei, N., Wong, B., & Glazier, E. W. (2013). Restoring ecosystems, restoring community: socioeconomic and cultural dimensions of a community-based coral reef restoration project. Regional Environmental Change 2013 16:2, 16(2), 301–313. https://doi.org/10.1007/S10113-013-0572-X

Kleypas, J. A., Buddemeier, R. W., & Gattuso, J. P. (2001). The future of Coral reefs in an age of global change. International Journal of Earth Sciences, 90(2), 426–437. https://doi.org/10.1007/s005310000125

Koop, K., Booth, D., Broadbent, A., Brodie, J., Bucher, D., Capone, D., Coll, J., Dennison, W., Erdmann, M., Harrison, P., Hoegh-Guldberg, O., Hutchings, P., Jones, G. B., Larkum, A. W. D., O’Neil, J., Steven, A., Tentori, E., Ward, S., Williamson, J., & Yellowlees, D. (2001). ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Marine Pollution Bulletin, 42(2), 91–120. https://doi.org/10.1016/S0025-326X(00)00181-8

Lantz, C. A., Atkinson, M. J., Winn, C. W., & Kahng, S. E. (2014). Dissolved inorganic carbon and total alkalinity of a Hawaiian fringing reef: Chemical techniques for monitoring the effects of ocean acidification on coral reefs. Coral Reefs, 33(1), 105–115. https://doi.org/10.1007/s00338-013-1082-5

Laurans, Y., Pascal, N., Binet, T., Brander, L., Clua, E., David, G., Rojat, D., & Seidl, A. (2013). Economic valuation of ecosystem services from coral reefs in the South Pacific: Taking stock of recent experience. Journal of Environmental Management, 116, 135–144. https://doi.org/10.1016/j.jenvman.2012.11.031

Mallela, J., & Perry, C. T. (2007). Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica. Coral Reefs, 26(1), 129–145. https://doi.org/10.1007/s00338-006-0169-7

Mass, T., Genin, A., Shavit, U., Grinstein, M., & Tchernov, D. (2010). Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Sciences, 107(6), 2527–2531. https://doi.org/10.1073/pnas.0912348107

McCook, L. J. (1999). Macroalgae, nutrients and phase shifts on coral reefs: Scientific issues and management consequences for the Great Barrier Reef. In Coral Reefs (Vol. 18, Issue 4, pp. 357–367). Springer-Verlag. https://doi.org/10.1007/s003380050213

Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29(2), 215–233. https://doi.org/10.1016/S0921-8009(99)00009-9

Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science (New York, N.Y.), 328(5985), 1517–1520. https://doi.org/10.1126/science.1185782

Orlando, J. L., & Yee, S. H. (2016, March 23). Linking Terrigenous Sediment Delivery to Declines in Coral Reef Ecosystem Services. Estuaries and Coasts, 40(2), 1–17. https://doi.org/10.1007/s12237-016-0167-0

Pascal, N., Allenbach, M., Brathwaite, A., Burke, L., Le Port, G., & Clua, E. (2016). Economic valuation of coral reef ecosystem service of coastal protection: A pragmatic approach. Ecosystem Services, 21, 72–80. https://doi.org/10.1016/j.ecoser.2016.07.005

Perry, C. T., Alvarez-Filip, L., Graham, N. A. J., Mumby, P. J., Wilson, S. K., Kench, P. S., Manzello, D. P., Morgan, K. M., Slangen, A. B. A., Thomson, D. P., Januchowski-Hartley, F., Smithers, S. G., Steneck, R. S., Carlton, R., Edinger, E. N., Enochs, I. C., Estrada-Saldívar, N., Haywood, M. D. E., Kolodziej, G., … Macdonald, C. (2018). Loss of coral reef growth capacity to track future increases in sea level. Nature, 558(7710), 396–400. https://doi.org/10.1038/s41586-018-0194-z

Robles-Zavala, E., & Chang Reynoso, A. G. (2018). The recreational value of coral reefs in the Mexican Pacific. Ocean and Coastal Management, 157, 1–8. https://doi.org/10.1016/j.ocecoaman.2018.02.010

Shamberger, K. E. F., Feely, R. A., Sabine, C. L., Atkinson, M. J., DeCarlo, E. H., Mackenzie, F. T., Drupp, P. S., & Butterfield, D. A. (2011). Calcification and organic production on a Hawaiian coral reef. Marine Chemistry, 127(1–4), 64–75. https://doi.org/10.1016/J.MARCHEM.2011.08.003

Silverman, J., Lazar, B., Cao, L., Caldeira, K., & Erez, J. (2009). Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters, 36(5), L05606. https://doi.org/10.1029/2008GL036282

Spalding, M., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., & zu Ermgassen, P. (2017). Mapping the global value and distribution of coral reef tourism. Marine Policy, 82, 104–113. https://doi.org/10.1016/j.marpol.2017.05.014

Suzuki, A., & Kawahata, H. (2003). Carbon budget of coral reef systems: An overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions. Tellus, Series B: Chemical and Physical Meteorology, 55(2), 428–444. https://doi.org/10.1034/j.1600-0889.2003.01442.x

Van Zanten, B. T., Van Beukering, P. J. H., & Wagtendonk, A. J. (2014). Coastal protection by coral reefs: A framework for spatial assessment and economic valuation. Ocean and Coastal Management, 96, 94–103. https://doi.org/10.1016/j.ocecoaman.2014.05.001

Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., & Graham, N. A. J. (2019). Coral reef ecosystem services in the Anthropocene. Functional Ecology, 33(6), 1023–1034. https://doi.org/10.1111/1365-2435.13331

Yeakel, K. L., Andersson, A. J., Bates, N. R., Noyes, T. J., Collins, A., & Garley, R. (2015). Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity. Proceedings of the National Academy of Sciences, 112(47), 14512–14517. https://doi.org/10.1073/pnas.1507021112

Mangrove Ecosystems

Adeel, Z., & Pomeroy, R. (2002). Assessment and management of mangrove ecosystems in developing countries. Trees - Structure and Function, 16(2–3), 235–238. https://doi.org/10.1007/s00468-002-0168-4

Alongi, D. M., & de Carvalho, N. A. (2008). The effect of small-scale logging on stand characteristics and soil biogeochemistry in mangrove forests of Timor Leste. Forest Ecology and Management, 255(3–4), 1359–1366. https://doi.org/10.1016/j.foreco.2007.10.051

Balke, T., & Friess, D. A. (2016). Geomorphic knowledge for mangrove restoration: a pan-tropical categorization. Earth Surface Processes and Landforms, 41(2), 231–239. https://doi.org/10.1002/esp.3841

Bandaranayake, W. M. (1998). Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes, 2(3), 133–148. https://doi.org/10.1023/A:1009988607044

Blasco, F., Saenger, P., & Janodet, E. (1996). Mangroves as indicators of coastal change. Catena, 27(3–4), 167–178. https://doi.org/10.1016/0341-8162(96)00013-6

Chellamani, P., Prakash Singh, C., & Panigrahy, S. (2014). Assessment of the health status of Indian mangrove ecosystems using multi temporal remote sensing data. Tropical Ecology, 55(2), 245–253. www.tropecol.com

Chowdhury, A., & Maiti, S. K. (2016). Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Human and Ecological Risk Assessment, 22(7), 1519–1541. https://doi.org/10.1080/10807039.2016.1190636

Ellis, J., Nicholls, P., Craggs, R., Hofstra, D., & Hewitt, J. (2004). Effect of terrigenous sedimentation on mangrove physiology and associated macrobenthic communities. Marine Ecology Progress Series, 270, 71–82. https://doi.org/10.3354/meps270071

Ellison, A. M. (2000). Mangrove restoration: Do we know enough? Restoration Ecology, 8(3), 219–229. https://doi.org/10.1046/j.1526-100X.2000.80033.x

Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management, 23(2), 115–137. https://doi.org/10.1007/s11273-014-9397-8

Faridah-Hanum, I., Yusoff, F. M., Fitrianto, A., Ainuddin, N. A., Gandaseca, S., Zaiton, S., Norizah, K., Nurhidayu, S., Roslan, M. K., Hakeem, K. R., Shamsuddin, I., Adnan, I., Awang Noor, A. G., Balqis, A. R. S., Rhyma, P. P., Siti Aminah, I., Hilaluddin, F., Fatin, R., & Harun, N. Z. N. (2019). Development of a comprehensive mangrove quality index (MQI) in Matang Mangrove: Assessing mangrove ecosystem health. Ecological Indicators, 102, 103–117. https://doi.org/10.1016/j.ecolind.2019.02.030

Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: A review. In Aquatic Botany (Vol. 89, Issue 2, pp. 237–250). Elsevier. https://doi.org/10.1016/j.aquabot.2007.12.009

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x

Gunawardena, M., & Rowan, J. S. (2005). Economic valuation of a mangrove ecosystem threatened by shrimp aquaculture in Sri Lanka. Environmental Management, 36(4), 535–550. https://doi.org/10.1007/s00267-003-0286-9

Hackney, C., Carrie, R., Tan Van, D., Ahmed, J., Teasdale, S., Quinn, C., Stringer, L., Le, H. van T., Nguyen, Q. H., Thanh, N. P. T., & Parsons, D. (2020). Impact of mangrove age on sediment retention and wave dissipation and its links to ecosystem services in the Red River Delta, Vietnam. EGUGA, 9089. https://ui.adsabs.harvard.edu/abs/2020EGUGA..22.9089H/abstract

Holguin, G., Gonzalez-Zamorano, P., de-Bashan, L. E., Mendoza, R., Amador, E., & Bashan, Y. (2006). Mangrove health in an arid environment encroached by urban development-a case study. Science of the Total Environment, 363(1–3), 260–274. https://doi.org/10.1016/j.scitotenv.2005.05.026

Ishtiaque, A., Myint, S. W., & Wang, C. (2016). Examining the ecosystem health and sustainability of the world’s largest mangrove forest using multi-temporal MODIS products. Science of the Total Environment, 569570, 1241–1254. https://doi.org/10.1016/j.scitotenv.2016.06.200

Kairo, J. G., Wanjiru, C., & Ochiewo, J. (2009). Net pay: Economic analysis of a replanted mangrove plantation in Kenya. Journal of Sustainable Forestry, 28(3–5), 395–414. https://doi.org/10.1080/10549810902791523

Kaly, U. L. (1998). Mangrove restoration: A potential tool for coastal management in tropical developing countries. Ambio, 27(8), 656–661. https://doi.org/10.2307/4314812

Kamali, B., & Hashim, R. (2011). Mangrove restoration without planting. Ecological Engineering, 37(2), 387–391. https://doi.org/10.1016/j.ecoleng.2010.11.025

Kibria, A. S. M. G., Costanza, R., Groves, C., & Behie, A. M. (2018). The interactions between livelihood capitals and access of local communities to the forest provisioning services of the Sundarbans Mangrove Forest, Bangladesh. Ecosystem Services, 32, 41–49. https://doi.org/10.1016/j.ecoser.2018.05.003

Kodikara, K. A. S., Mukherjee, N., Jayatissa, L. P., Dahdouh-Guebas, F., & Koedam, N. (2017). Have mangrove restoration projects worked? An in-depth study in Sri Lanka. Restoration Ecology, 25(5), 705–716. https://doi.org/10.1111/rec.12492

Lovelock, C. E., Ball, M. C., Martin, K. C., & C. Feller, I. (2009). Nutrient Enrichment Increases Mortality of Mangroves. PLoS ONE, 4(5), e5600. https://doi.org/10.1371/journal.pone.0005600

Lovelock, C. E., & Brown, B. M. (2019). Land tenure considerations are key to successful mangrove restoration. In Nature Ecology and Evolution (Vol. 3, Issue 8, p. 1135). Nature Publishing Group. https://doi.org/10.1038/s41559-019-0942-y

M. Brander, L., J. Wagtendonk, A., S. Hussain, S., McVittie, A., Verburg, P. H., de Groot, R. S., & van der Ploeg, S. (2012). Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosystem Services, 1(1), 62–69. https://doi.org/10.1016/j.ecoser.2012.06.003

Mcleod, E., & Salm, R. V. (n.d.). Managing Mangroves for Resilience to Climate Change IUCN Global Marine Programme. www.nature.org/marine.

Peng, Y., Chen, G., Li, S., Liu, Y., & Pernetta, J. C. (2013). Use of degraded coastal wetland in an integrated mangrove-aquaculture system: A case study from the South China Sea. Ocean and Coastal Management, 85, 209–213. https://doi.org/10.1016/j.ocecoaman.2013.04.008

Samonte-Tan, G. P. B., White, A. T., Tercero, M. A., Diviva, J., Tabara, E., & Caballes, C. (2007). Economic valuation of coastal and marine resources: Bohol Marine Triangle, Philippines. Coastal Management, 35(2–3), 319–338. https://doi.org/10.1080/08920750601169634

Sathirathai, S., & Barbier, E. B. (2001). Valuing mangrove conservation in Southern Thailand. Contemporary Economic Policy, 19(2), 109–122. https://doi.org/10.1111/j.1465-7287.2001.tb00054.x

Thom, B. G. (1982). Mangrove ecology - A geomorphological perspective. In Mangrove ecosystems in Australia: structure, function and management (pp. 3–17). A. N. U. Press. https://ci.nii.ac.jp/naid/10003518183

Vaghela, B. N., Parmar, M. G., Solanki, H. A., Kansara, B. B., Prajapati, S. K., & Kalubarme, M. H. (2018). Multi Criteria Decision Making (MCDM) Approach for Mangrove Health Assessment using Geo-informatics Technology. International Journal of Environment and Geoinformatics, 5(2), 114–131. https://doi.org/10.30897/ijegeo.412511

Zhang, C., Kovacs, J., Liu, Y., Flores-Verdugo, F., & Flores-de-Santiago, F. (2014). Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican Pacific. Remote Sensing, 6(12), 11673–11688. https://doi.org/10.3390/rs61211673

Kelp Forest Ecosystems

Araújo, R. M., Assis, J., Aguillar, R., Airoldi, L., Bárbara, I., Bartsch, I., Bekkby, T., Christie, H., Davoult, D., Derrien-Courtel, S., Fernandez, C., Fredriksen, S., Gevaert, F., Gundersen, H., Le Gal, A., Lévêque, L., Mieszkowska, N., Norderhaug, K. M., Oliveira, P., … Sousa-Pinto, I. (2016). Status, trends and drivers of kelp forests in Europe: an expert assessment. Biodiversity and Conservation, 25(7), 1319–1348. https://doi.org/10.1007/s10531-016-1141-7

Bearham, D., Vanderklift, M., & Gunson, J. (2013). Temperature and light explain spatial variation in growth and productivity of the kelp Ecklonia radiata. Marine Ecology Progress Series, 476, 59–70. https://doi.org/10.3354/meps10148

Bell, T. W., Allen, J. G., Cavanaugh, K. C., & Siegel, D. A. (2020). Three decades of variability in California’s giant kelp forests from the Landsat satellites. Remote Sensing of Environment, 238, 110811. https://doi.org/10.1016/j.rse.2018.06.039

Bennett, S., Wernberg, T., Connell, S. D., Hobday, A. J., Johnson, C. R., & Poloczanska, E. S. (2016). The “Great Southern Reef”: Social, ecological and economic value of Australia’s neglected kelp forests. Marine and Freshwater Research, 67(1), 47–56. https://doi.org/10.1071/MF15232

Blamey, L. K., & Bolton, J. J. (2018). The economic value of South African kelp forests and temperate reefs: Past, present and future. Journal of Marine Systems, 188, 172–181. https://doi.org/10.1016/j.jmarsys.2017.06.003

Borras-Chavez, R., Edwards, M. S., Arvizu-Higuera, D. L., Rodríguez-Montesinos, Y. E., Hernández-Carmona, G., & Briceño-Domínguez, D. (2016). Repetitive harvesting of Macrocystis pyrifera (Phaeophyceae) and its effects on chemical constituents of economic value. Botanica Marina, 59(1), 63–71. https://doi.org/10.1515/bot-2015-0028

Buschmann, A. H., Riquelme, V. A., Hernández-González, M. C., Varela, D., Jiménez, J. E., Henríquez, L. A., Vergara, P. A., Guíñez, R., & Filún, L. (2006). A review of the impacts of salmonid farming on marine coastal ecosystems in the southeast Pacific. ICES Journal of Marine Science, 63(7), 1338–1345. https://doi.org/10.1016/j.icesjms.2006.04.021

Caselle, J. E., Rassweiler, A., Hamilton, S. L., & Warner, R. R. (2015). Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Scientific Reports, 5(1), 1–14. https://doi.org/10.1038/srep14102

Connell, S., Russell, B., Turner, D., Shepherd, S., Kildea, T., Miller, D., Airoldi, L., & Cheshire, A. (2008). Recovering a lost baseline: missing kelp forests from a metropolitan coast. Marine Ecology Progress Series, 360, 63–72. https://doi.org/10.3354/meps07526

Eckman, J. E., Duggins, D. O., & Sewell, A. T. (1989). Ecology of under story kelp environments. I. Effects of kelps on flow and particle transport near the bottom. Journal of Experimental Marine Biology and Ecology, 129(2), 173–187. https://doi.org/10.1016/0022-0981(89)90055-5

Filbee-Dexter, K., & Wernberg, T. (2018). Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests. BioScience, 68(2), 64–76. https://doi.org/10.1093/biosci/bix147

Fram, J. P., Stewart, H. L., Brzezinski, M. A., Gaylord, B., Reed, D. C., Williams, S. L., & MacIntyre, S. (2008). Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnology and Oceanography, 53(4), 1589–1603. https://doi.org/10.4319/lo.2008.53.4.1589

Gagné, J. A., Mann, K. H., & Chapman, A. R. O. (1982). Seasonal patterns of growth and storage in Laminaria longicruris in relation to differing patterns of availability of nitrogen in the water. Marine Biology, 69(1), 91–101. https://doi.org/10.1007/BF00396965

Gann, G. D., McDonald, T., Walder, B., Aronson, J., Nelson, C. R., Jonson, J., Hallett, J. G., Eisenberg, C., Guariguata, M. R., Liu, J., Hua, F., Echeverría, C., Gonzales, E., Shaw, N., Decleer, K., & Dixon, K. W. (2019). International principles and standards for the practice of ecological restoration. Second edition. Restoration Ecology, 27(S1), S1–S46. https://doi.org/10.1111/rec.13035

Halpern, B. S., Cottenie, K., & Broitman, B. R. (2006). Strong top-down control in Southern California kelp forest ecosystems. Science, 312(5777), 1230–1232. https://doi.org/10.1126/science.1128613

Hamilton, S. L., Bell, T. W., Watson, J. R., Grorud‐Colvert, K. A., & Menge, B. A. (2020). Remote sensing: generation of long‐term kelp bed data sets for evaluation of impacts of climatic variation. Ecology, 101(7). https://doi.org/10.1002/ecy.3031

Hamilton, S. L., Caselle, J. E., Lantz, C. A., Egloff, T. L., Kondo, E., Newsome, S. D., Loke-Smith, K., Pondella, D. J., Young, K. A., & Lowe, C. G. (2011). Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs. Marine Ecology Progress Series, 429, 227–244. https://doi.org/10.3354/meps09086

Harrold, C., & Reed, D. C. (1985). Food availability, sea urchin grazing, and kelp forest community structure. Ecology, 66(4), 1160–1169. https://doi.org/10.2307/1939168

Krumhansl, K. A., Okamoto, D. K., Rassweiler, A., Novak, M., Bolton, J. J., Cavanaugh, K. C., Connell, S. D., Johnson, C. R., Konar, B., Ling, S. D., Micheli, F., Norderhaug, K. M., Pérez-Matus, A., Sousa-Pinto, I., Reed, D. C., Salomon, A. K., Shears, N. T., Wernberg, T., Anderson, R. J., … Byrnes, J. E. K. (2016). Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13785–13790. https://doi.org/10.1073/pnas.1606102113

Layton, C., Coleman, M. A., Marzinelli, E. M., Steinberg, P. D., Swearer, S. E., Vergés, A., Wernberg, T., & Johnson, C. R. (2020). Kelp Forest Restoration in Australia. Frontiers in Marine Science, 7, 74. https://doi.org/10.3389/fmars.2020.00074

Menzel, S., Kappel, C. V., Broitman, B. R., Micheli, F., & Rosenberg, A. A. (2013). Linking human activity and ecosystem condition to inform marine ecosystem based management. Aquatic Conservation: Marine and Freshwater Ecosystems, 23(4), 506–514. https://doi.org/10.1002/aqc.2365

Miller, R. J., Lafferty, K. D., Lamy, T., Kui, L., Rassweiler, A., & Reed, D. C. (2018). Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proceedings of the Royal Society B: Biological Sciences, 285(1874), 20172571. https://doi.org/10.1098/rspb.2017.2571

North, W. J. (1976). Aquacultural Techniques for Creating and Restoring Beds of Giant Kelp, Macrocystis spp. . Journal of the Fisheries Research Board of Canada, 33(4), 1015–1023. https://doi.org/10.1139/f76-129

Page, H., Reed, D., Brzezinski, M., Melack, J., & Dugan, J. (2008). Assessing the importance of land and marine sources of organic matter to kelp forest food webs. Marine Ecology Progress Series, 360, 47–62. https://doi.org/10.3354/meps07382

Reed, D. C., Nelson, J. C., Harrer, S. L., & Miller, R. J. (2016). Estimating biomass of benthic kelp forest invertebrates from body size and percent cover data. Marine Biology, 163(5), 1–6. https://doi.org/10.1007/s00227-016-2879-x

Rogers-Bennett, L., & Catton, C. A. (2019). Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-51114-y

Smale, D. A., Burrows, M. T., Evans, A. J., King, N., Sayer, M. D. J., Yunnie, A. L. E., & Moore, P. J. (2016). Linking environmental variables with regionalscale variability in ecological structure and standing stock of carbon within UK kelp forests. Marine Ecology Progress Series, 542, 79–95. https://doi.org/10.3354/meps11544

Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N., & Hawkins, S. J. (2013). Threats and knowledge gaps for ecosystem services provided by kelp forests: A northeast Atlantic perspective. Ecology and Evolution, 3(11), 4016–4038. https://doi.org/10.1002/ece3.774

Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson, J. M., Estes, J. A., & Tegner, M. J. (2002). Kelp forest ecosystems: Biodiversity, stability, resilience and future. In Environmental Conservation (Vol. 29, Issue 4, pp. 436–459). Cambridge University Press. https://doi.org/10.1017/S0376892902000322

Stévant, P., Rebours, C., & Chapman, A. (2017). Seaweed aquaculture in Norway: recent industrial developments and future perspectives. In Aquaculture International (Vol. 25, Issue 4, pp. 1373–1390). Springer International Publishing. https://doi.org/10.1007/s10499-017-0120-7

Vásquez, J. A., Zuñiga, S., Tala, F., Piaget, N., Rodríguez, D. C., & Vega, J. M. A. (2014). Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem. Journal of Applied Phycology, 26(2), 1081–1088. https://doi.org/10.1007/s10811-013-0173-6

Wernberg, T., Krumhansl, K., Filbee-Dexter, K., & Pedersen, M. F. (2018). Status and trends for the world’s kelp forests. In World Seas: An Environmental Evaluation Volume III: Ecological Issues and Environmental Impacts (pp. 57–78). Elsevier. https://doi.org/10.1016/B978-0-12-805052-1.00003-6

Zimmerman, R. C., & Kremer, J. N. (1984). Episodic Nutrient Supply To a Kelp Forest Ecosystem in Southern California. Journal of Marine Research, 42(3), 591–604. https://doi.org/10.1357/002224084788506031

Seagrass, Estuary and Salt Marsh Ecosystems

Barbier, E. B. (2015). Valuing the storm protection service of estuarine and coastal ecosystems. Ecosystem Services, 11, 32–38. https://doi.org/10.1016/j.ecoser.2014.06.010

Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. In Ecological Monographs (Vol. 81, Issue 2, pp. 169–193). John Wiley & Sons, Ltd. https://doi.org/10.1890/10-1510.1

Bell, F. W. (1997). The economic valuation of saltwater marsh supporting marine recreational fishing in the southeastern United States. Ecological Economics, 21(3), 243–254. https://doi.org/10.1016/S0921-8009(96)00105-X

Birol, E., & Cox, V. (2007). Using choice experiments to design wetland management programmes: The case of Severn Estuary Wetland, UK. Journal of Environmental Planning and Management, 50(3), 363–380. https://doi.org/10.1080/09640560701261661

Boxall, P. C., Adamowicz, W. L., Olar, M., West, G. E., & Cantin, G. (2012). Analysis of the economic benefits associated with the recovery of threatened marine mammal species in the Canadian St. Lawrence Estuary. Marine Policy, 36(1), 189–197. https://doi.org/10.1016/j.marpol.2011.05.003

Breaux, A., Farber, S., & Day, J. (1995). Using natural coastal wetlands systems for wastewater treatment: An economic benefit analysis. In Journal of Environmental Management (Vol. 44, Issue 3). https://doi.org/10.1006/jema.1995.0046

de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D., Berg, M. P., Cipriotti, P., Feld, C. K., Hering, D., da Silva, P. M., Potts, S. G., Sandin, L., Sousa, J. P., Storkey, J., Wardle, D. A., & Harrison, P. A. (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19(10), 2873–2893. https://doi.org/10.1007/s10531-010-9850-9

Freeman, A. M. (1991). Valuing environmental resources under alternative management regimes. Ecological Economics, 3(3), 247–256. https://doi.org/10.1016/0921-8009(91)90035-D

GarcíA-Llorente, M., MartíN-López, B., Díaz, S., & Montes, C. (2011). Can ecosystem properties be fully translated into service values? an economic valuation of aquatic plant services. Ecological Applications, 21(8), 3083–3103. https://doi.org/10.1890/10-1744.1

Ghermandi, A., Nunes, P. A. L. D., Portela, R., Nalini, R., & Teelucksingh, S. S. (2011). Recreational, Cultural and Aesthetic Services from Estuarine and Coastal Ecosystems. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1532803

Gregory, R., & Wellman, K. (2001). Bringing stakeholder values into environmental policy choices: A community-based estuary case study. Ecological Economics, 39(1), 37–52. https://doi.org/10.1016/S0921-8009(01)00214-2

Hosack, G. R., Dumbauld, B. R., Ruesink, J. L., & Armstrong, D. A. (2006). Habitat associations of estuarine species: Comparisons of intertidal mudflat, seagrass (Zostera marina), and oyster (Crassostrea gigas) habitats. Estuaries and Coasts, 29(6), 1150–1160. https://doi.org/10.1007/BF02781816

Howarth, R. W. (1998). An assessment of human influences on fluxes of nitrogen from the terrestrial landscape to the estuaries and continental shelves of the North Atlantic Ocean. Nutrient Cycling in Agroecosystems, 52(2–3), 213–223. https://doi.org/10.1023/a:1009784210657

Johnston, R. J., Grigalunas, T. A., Opaluch, J. J., Mazzotta, M., & Diamantedes, J. (2002). Valuing estuarine resource services using economic and ecological models: The Peconic Estuary System study. Coastal Management, 30(1), 47–65. https://doi.org/10.1080/08920750252692616

Kendal, D., Williams, K., & Armstrong, L. (2008). Preference for and performance of some Australian native plants grown as hedges. Urban Forestry and Urban Greening, 7(2), 93–106. https://doi.org/10.1016/j.ufug.2008.02.002

King, S. E., & Lester, J. N. (1995). The value of salt marsh as a sea defence. Marine Pollution Bulletin, 30(3), 180–189. https://doi.org/10.1016/0025-326X(94)00173-7

Kragt, M. E., Newham, L. T. H., Bennett, J., & Jakeman, A. J. (2011). An integrated approach to linking economic valuation and catchment modelling. Environmental Modelling and Software, 26(1), 92–102. https://doi.org/10.1016/j.envsoft.2010.04.002

Kramer, R. a. (2005). Economic Tools for Valuing Freshwater and Estuarine Ecosystem Services (Issue June). https://www.researchgate.net/publication/237584446

Lacoul, P., & Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. In Environmental Reviews (Vol. 14, Issue 2, pp. 89–136). NRC Research Press Ottawa, Canada . https://doi.org/10.1139/A06-001

Lotze, H. K. (2006). Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science, 312(5781), 1806–1809. https://doi.org/10.1126/science.1128035

Lynne, G. D., Conroy, P., & Prochaska, F. J. (1981). Economic valuation of marsh areas for marine production processes. Journal of Environmental Economics and Management, 8(2), 175–186. https://doi.org/10.1016/0095-0696(81)90006-1

McArthur, L. C., & Boland, J. W. (2006). The economic contribution of seagrass to secondary production in South Australia. Ecological Modelling, 196(1–2), 163–172. https://doi.org/10.1016/j.ecolmodel.2006.02.030

Mitsch, W. J., Cronk, J. K., Wu Xinyuan, & Nairn, R. W. (1995). Phosphorus retention in constructed freshwater riparian marshes. Ecological Applications, 5(3), 830–845. https://doi.org/10.2307/1941991

Pascual, M., Borja, A., Franco, J., Burdon, D., Atkins, J. P., & Elliott, M. (2012). What are the costs and benefits of biodiversity recovery in a highly polluted estuary? Water Research, 46(1), 205–217. https://doi.org/10.1016/j.watres.2011.10.053

Pinto, R., Patrício, J., Neto, J. M., Salas, F., & Marques, J. C. (2010). Assessing estuarine quality under the ecosystem services scope: Ecological and socioeconomic aspects. Ecological Complexity, 7(3), 389–402. https://doi.org/10.1016/j.ecocom.2010.05.001

Rahman, S. A., & Yaakub, S. M. (2020). Socio-economic valuation of seagrass meadows in the Pulai River Estuary, Peninsular Malaysia, through a wellbeing lens. Marine and Freshwater Research, 71(8), 877. https://doi.org/10.1071/MF19208

Schroeder, W. W., Dinnel, S. P., & Wiseman, W. J. (2011). Salinity structure of a shallow, tributary estuary (pp. 155–171). https://doi.org/10.1029/ce040p0155

Sigleo, A. C., Mordy, C. W., Stabeno, P., & Frick, W. E. (2005). Nitrate variability along the Oregon coast: Estuarine-coastal exchange. Estuarine, Coastal and Shelf Science, 64(2–3), 211–222. https://doi.org/10.1016/j.ecss.2005.02.018

Wiederholt, R., Stainback, G. A., Paudel, R., Khare, Y., Naja, M., Davis, S. E., & Van Lent, T. (2020). Economic valuation of the ecological response to hydrologic restoration in the Greater Everglades ecosystem. Ecological Indicators, 117, 106678. https://doi.org/10.1016/j.ecolind.2020.106678

Windle, J., & Rolfe, J. (2005). Assessing non-use values for environmental protection of an estuary in a great barrier reef catchment. Australasian Journal of Environmental Management, 12(3), 147–155. https://doi.org/10.1080/14486563.2005.10648645

Wu, X., & Mitsch, W. J. (1998). Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands, 18(1), 9–20. https://doi.org/10.1007/BF03161438

Sediment Ecosystems

Ariza, E., Ballester, R., Rigall-I-Torrent, R., Saló, A., Roca, E., Villares, M., Jiménez, J. A., & Sardá, R. (2012). On the relationship between quality, users’ perception and economic valuation in NW Mediterranean beaches. Ocean and Coastal Management, 63, 55–66. https://doi.org/10.1016/j.ocecoaman.2012.04.002

Barton, D. N., Navrud, S., Bjørkeslett, H., & Lilleby, I. (2010). Economic benefits of large-scale remediation of contaminated marine sediments-a literature review and an application to the Grenland fjords in Norway. In Journal of Soils and Sediments (Vol. 10, Issue 2, pp. 186–201). Springer. https://doi.org/10.1007/s11368-009-0158-x

Cesar, H. S. J., Öhman, M. C., Espeut, P., & Honkanen, M. (2000). Economic Valuation of an Integrated Terrestrial and Marine Protected Area: Jamaica’s Portland Bight. In Collected Essays on the Economics of Coral Reefs (pp. 203–214). https://www.researchgate.net/publication/236628219

Chan, F., Barth, J. A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W. T., & Menge, B. A. (2008). Emergence of anoxia in the California current large marine ecosystem. In Science (Vol. 319, Issue 5865, p. 920). American Association for the Advancement of Science. https://doi.org/10.1126/science.1149016

De Wit, R., Rey-Valette, H., Balavoine, J., Ouisse, V., & Lifran, R. (2017). Restoration ecology of coastal lagoons: new methods for the prediction of ecological trajectories and economic valuation. Aquatic Conservation: Marine and Freshwater Ecosystems, 27(1), 137–157. https://doi.org/10.1002/aqc.2601

Grigalunas, T. A., & Opaluch, J. J. (1989). Managing contaminated marine sediments. Economic considerations. Marine Policy, 13(4), 318–333. https://doi.org/10.1016/0308-597X(89)90017-1

Hanley, N., Hynes, S., Patterson, D., & Jobstvogt, N. (2015). Economic Valuation of Marine and Coastal Ecosystems: Is it currently fit for purpose? Journal of Ocean and Coastal Economics, 2(1). https://doi.org/10.15351/2373-8456.1014

Harrington, J., Murphy, J., Coleman, M., Jordan, D., Debuigne, T., & Szacsuri, G. (2016). Economic modelling of the management of dredged marine sediments. Geology, Geophysics & Environment, 42(3), 311. https://doi.org/10.7494/geol.2016.42.3.311

Huang, J. C., Poor, P. J., & Zhao, M. Q. (2007). Economic valuation of beach erosion control. Marine Resource Economics, 22(3), 221–238. https://doi.org/10.1086/mre.22.3.42629556

Laing, S., Schleyer, M., & Turpie, J. (2020). Ecosystem service values of sediment generation and entrapment by marginal coral reefs at Sodwana Bay, South Africa. African Journal of Marine Science, 42(2), 199–207. https://doi.org/10.2989/1814232X.2020.1771415

Lee, J. (2015). Economic valuation of marine litter and microplastic pollution in the marine environment: An initial assessment of the case of the United Kingdom Growth Strategies of Sub-Saharan Africa View project Economic valuation of marine litter and microplastic pol. https://www.researchgate.net/publication/283680054

Marzetti, S., Disegna, M., Koutrakis, E., Sapounidis, A., Marin, V., Martino, S., Roussel, S., Rey-Valette, H., & Paoli, C. (2016). Visitors’ awareness of ICZM and WTP for beach preservation in four European Mediterranean regions. Marine Policy, 63, 100–108. https://doi.org/10.1016/j.marpol.2015.10.005

McLeod, I. M., Boström-Einarsson, L., Creighton, C., D’Anastasi, B., Diggles, B., Dwyer, P. G., Firby, L., Le Port, A., Luongo, A., Martínez-Baena, F., McOrrie, S., Heller-Wagner, G., & Gillies, C. L. (2019). Habitat value of Sydney rock oyster (Saccostrea glomerata) reefs on soft sediments. Marine and Freshwater Research, 126(March), 1–16. https://doi.org/10.1071/MF18197

Sagebiel, J., Schwartz, C., Rhozyel, M., Rajmis, S., & Hirschfeld, J. (2016). Economic valuation of Baltic marine ecosystem services: Blind spots and limited consistency. ICES Journal of Marine Science, 73(4), 991–1003. https://doi.org/10.1093/icesjms/fsv264

Sparrevik, M., & Breedveld, G. D. (2007). From Ecological Risk Assessments to Risk Governance. Evaluation of the Norwegian Management System for Contaminated Sediments. Integrated Environmental Assessment and Management, preprint(2009), 1. https://doi.org/10.1897/ieam_2009-049.1

Sutinen, J. G., Clay, P., Dyer, C. L., Edwards, S. F., Gates, J., Grigalunas, T. A., Hennessey, T., Juda, L., Kitts, A. W., Logan, P. N., Poggie, J. J., Rountree, B. P., Steinback, S. R., Thunberg, E. M., Upton, H. F., & Walden, J. B. (2005). 3 A framework for monitoring and assessing socioeconomics and governance of large marine ecosystems. In Large Marine Ecosystems (Vol. 13, Issue C, pp. 27–81). Elsevier Ltd. https://doi.org/10.1016/S1570-0461(05)80027-8

Walker, T. R., Maclean, B., Appleton, R., Mcmillan, S., & Miles, M. (2013). Cost-Effective Sediment Dredge Disposal Options for Small Craft Harbors in Canada. Remediation, 23(4), 123–140. https://doi.org/10.1002/rem.21371

Wesławski, J. M., Andrulewicz, E., Kotwicki, L., Kuzebski, E., Lewandowski, A., Linkowski, T., Massel, S. R., Musielak, S., Olańczuk-Neyman, K., Pempkowiak, J., Piekarek-Jankowska, H., Radziejewska, T., Rózyński, G., Sagan, I., Skóra, K. E., Szefler, K., Urbański, J., Witek, Z., Wołowicz, M., … Zarzycki, T. (2006). Basis for a valuation of the Polish Exclusive Economic Zone of the Baltic Sea: Rationale and quest for tools. In Oceanologia (Vol. 48, Issue 1, pp. 145–167). -. http://www.iopan.gda.pl/oceanologia/

Open Ocean Ecosystems

Alkalay, R., Pasternak, G., & Zask, A. (2007). Clean-coast index-A new approach for beach cleanliness assessment. Ocean and Coastal Management, 50(5–6), 352–362. https://doi.org/10.1016/j.ocecoaman.2006.10.002

Bartkowski, B., Lienhoop, N., & Hansjürgens, B. (2015). Capturing the complexity of biodiversity: A critical review of economic valuation studies of biological diversity. Ecological Economics, 113, 1–14. https://doi.org/10.1016/j.ecolecon.2015.02.023

Beaumont, N. J., Austen, M. C., Mangi, S. C., & Townsend, M. (2008). Economic valuation for the conservation of marine biodiversity. Marine Pollution Bulletin, 56(3), 386–396. https://doi.org/10.1016/j.marpolbul.2007.11.013

Berman, M. (2006). Modeling spatial choice in ocean fisheries. Marine Resource Economics, 21(4), 375–394. https://doi.org/10.1086/mre.21.4.42629522

Börger, T., Beaumont, N. J., Pendleton, L., Boyle, K. J., Cooper, P., Fletcher, S., Haab, T., Hanemann, M., Hooper, T. L., Hussain, S. S., Portela, R., Stithou, M., Stockill, J., Taylor, T., & Austen, M. C. (2014). Incorporating ecosystem services in marine planning: The role of valuation. Marine Policy, 46, 161–170. https://doi.org/10.1016/j.marpol.2014.01.019

Fisher, A., Hanemann, M., Harte, J., & Ellis, G. (n.d.). Economic Valuation of Aquatic Ecosystems Asian Energy Security View project Alpine-Treeline Warming Experiment View project. Retrieved August 17, 2020, from https://www.researchgate.net/publication/267681070

Galparsoro, I., Borja, A., & Uyarra, M. C. (2014). Mapping ecosystem services provided by benthic habitats in the European North Atlantic Ocean. Frontiers in Marine Science, 1(JUL), 23. https://doi.org/10.3389/fmars.2014.00023

Gibbs, M. T. (2015). Coastal climate risk and adaptation studies: The importance of understanding different classes of problem. Ocean and Coastal Management, 103, 9–13. https://doi.org/10.1016/j.ocecoaman.2014.10.018

Gobin, C., & Da Fonseca, G. A. B. (2014). Deep-sea protection: Coordinate efforts. In Science (Vol. 344, Issue 6190, p. 1352). American Association for the Advancement of Science. https://doi.org/10.1126/science.344.6190.1352

Kildow, J. T., & McIlgorm, A. (2010). The importance of estimating the contribution of the oceans to national economies. Marine Policy, 34(3), 367–374. https://doi.org/10.1016/j.marpol.2009.08.006

Ledoux, L., & Turner, R. K. (2002). Valuing ocean and coastal resources: A review of practical examples and issues for further action. Ocean and Coastal Management, 45(9–10), 583–616. https://doi.org/10.1016/S0964-5691(02)00088-1

Ledoux, L., & Turner, R. K. (2002). Valuing ocean and coastal resources: A review of practical examples and issues for further action. Ocean and Coastal Management, 45(9–10), 583–616. https://doi.org/10.1016/S0964-5691(02)00088-1

Liu, S., Stern, D. I. (2008). A Meta-Analysis of Contingent Valuation Studies in Coastal and Near-Shore Marine Ecosystems. Mpra, 11608, 36 pp. http://mpra.ub.uni-muenchen.de/11608/

Mengerink, K. J., Van Dover, C. L., Ardron, J., Baker, M., Escobar-Briones, E., Gjerde, K., Koslow, J. A., Ramirez-Llodra, E., Lara-Lopez, A., Squires, D., Sutton, T., Sweetman, A. K., & Levin, L. A. (2014). A call for deep-ocean stewardship. In Science (Vol. 344, Issue 6185, pp. 696–698). American Association for the Advancement of Science. https://doi.org/10.1126/science.1251458

Milon, J. W., & Alvarez, S. (2019). The elusive quest for valuation of coastal and marine ecosystem services. In Water (Switzerland) (Vol. 11, Issue 7, p. 1518). MDPI AG. https://doi.org/10.3390/w11071518

Murillas-Maza, A., Virto, J., Gallastegui, M. C., González, P., & Fernández-Macho, J. (2011). The value of open ocean ecosystems: A case study for the Spanish exclusive economic zone. Natural Resources Forum, 35(2), 122–133. https://doi.org/10.1111/j.1477-8947.2011.01383.x

Pendleton, L., Atiyah, P., & Moorthy, A. (2007). Is the non-market literature adequate to support coastal and marine management? Ocean and Coastal Management, 50(5–6), 363–378. https://doi.org/10.1016/j.ocecoaman.2006.11.004

Raheem, N., Colt, S., Fleishman, E., Talberth, J., Swedeen, P., Boyle, K. J., Rudd, M., Lopez, R. D., Crocker, D., Bohan, D., O’Higgins, T., Willer, C., & Boumans, R. M. (2012). Application of non-market valuation to California’s coastal policy decisions. Marine Policy, 36(5), 1166–1171. https://doi.org/10.1016/j.marpol.2012.01.005

Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R., Escobar, E., Levin, L. A., Menot, L., Rowden, A. A., Smith, C. R., & van Dover, C. L. (2011). Man and the last great wilderness: Human impact on the deep sea. PLoS ONE, 6(8), e22588–e22588. https://doi.org/10.1371/journal.pone.0022588

Ressurreição, A., Gibbons, J., Dentinho, T. P., Kaiser, M., Santos, R. S., & Edwards-Jones, G. (2011). Economic valuation of species loss in the open sea. Ecological Economics, 70(4), 729–739. https://doi.org/10.1016/j.ecolecon.2010.11.009

Rodrigues, L. C., van den Bergh, J. C. J. M., & Ghermandi, A. (2013). Socio-economic impacts of ocean acidification in the Mediterranean Sea. Marine Policy, 38, 447–456. https://doi.org/10.1016/j.marpol.2012.07.005

Samhouri, J. F., Lester, S. E., Selig, E. R., Halpern, B. S., Fogarty, M. J., Longo, C., & McLeod, K. L. (2012). Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere, 3(5), art41. https://doi.org/10.1890/es11-00366.1

Schaafsma, M., & Turner, R. K. (2015). Valuation of Coastal and Marine Ecosystem Services: A Literature Review (pp. 103–125). Springer, Cham. https://doi.org/10.1007/978-3-319-17214-9_6

Shen, Z., Wakita, K., Oishi, T., Yagi, N., Kurokura, H., Blasiak, R., & Furuya, K. (2015). Willingness to pay for ecosystem services of open oceans by choice-based conjoint analysis: A case study of Japanese residents. Ocean and Coastal Management, 103, 1–8. https://doi.org/10.1016/j.ocecoaman.2014.10.016

Söderqvist, T., Eggert, H., Olsson, B., & Soutukorva, Å. (2005). Economic valuation for sustainable development in the Swedish coastal zone. Ambio, 34(2), 169–175. https://doi.org/10.1579/0044-7447-34.2.169

Torres, C., & Hanley, N. (2017). Communicating research on the economic valuation of coastal and marine ecosystem services. Marine Policy, 75, 99–107. https://doi.org/10.1016/j.marpol.2016.10.017

Vassilopoulos, A., Koundouri, P., Vassilopoulos, A., & Koundouri, P. (2017). Valuation of Marine Ecosystems. In Oxford Research Encyclopedia of Environmental Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389414.013.529

Global Ocean Accounts Partnership, 2019