Appendix 6.10 Core ocean statistics for key ecosystem types
Table 42. Coral Reef ecosystem core statistics
Ecosystem Type: Coral Reefs | |
Category | Statistic |
Ocean Assets |
|
Condition | Overall condition statistics |
Biodiversity | Coral coverage (satellite data) |
| Hermatypic coral abundance (in-situ) |
| Hermatypic coral diversity (in-situ) |
Ecosystem Fitness | Production: Respiration Ratio |
| Net Accretion Rate |
| Total Alkalinity/DIC Slope |
| Reef water flow velocity |
Biogeochemical Cycling | Nitrate concentration |
| Total Alkalinity |
| Offshore: Inshore DIC ratio |
| Aragonite Saturation State |
| Dissolved Oxygen |
| pH (total scale) |
Physiochemical Quality | Temperature |
| Mean Sea Level |
| Salinity |
Greenhouse Gas Retention | Dissolved Inorganic Nutrient Concentration |
| Carbon Dioxide Flux |
| Coral coverage (satellite data) |
| Sediment: Hard Coral Ratio |
Stock | Overall stock statistics |
Ecosystem Extent | Coral coverage (satellite data) |
Total reef area (satellite data) | |
Stock of Natural Aquatic Resources | Stocks of Subsistence Fish |
(Vertebrates) | Stocks of Recreational Fish |
| Stocks of Commercial Fish |
| Stocks of Ornamental Aquarium Fish |
Stock of Natural Aquatic Resources | Stocks of Echinoderms |
(Invertebrates, Algae, Plants) | Stocks of Gastropods |
| Stocks of Ornamental Aquarium Coral for Export |
| Stocks of Bivalves |
Stock of Cultivated Aquatic Resources | Gross Pelagic Fish Reared |
(Vertebrates) | Gross Reef Fish Reared |
Stock of Cultivated Aquatic Resources | Gross Coral Cultured |
(Invertebrates) | Gross Algae Grown |
Stock of Abiotic Resources | Calcium Available for Harvest |
| Minerals/Oils Available for Extraction |
Ocean Services |
|
Regulating | Conditions affecting flow of service |
Greenhouse Gas Sequestration | Coastal geomorphology |
| Sediment deposition rate |
| Light availability |
| Coral Cover |
Coastal Protection | Coral Species |
| Reef length/distance |
| Water depth |
| Mean Wave Height |
| Storm Frequency |
Erosion Control | Sea Level Rise Rate |
| Terrestrial Sediment Deposition Rate |
| Reef slope to lagoon sediment deposition rate |
Water Purification | Sediment Organic Carbon:Nitrogen Ratio |
| Benthic coral:algae cover ratio |
Nutrient Cycling | Benthic algae cover |
| Sediment cover |
| Ratio of Nitrate:Ammonium |
Waste Remediation | Sediment Organic Carbon Content |
| Sediment Organic Nitrogen Content |
| Plastic Pollutant Load |
| Terrestrial Runoff Rate |
Pollutant Remediation | Fertilizer Concentrations |
| POC/PON Concentrations |
| Ciguatera Presence |
Provisioning | Conditions affecting flow of services/economic values |
Maintenance of Fisheries | Fish catch and value |
| Coral Cover |
Cultivated Resources Extracted | Value of Cultivated Vertebrates |
| Value of Cultivated Invertebrates |
Raw Materials Extracted | Value of Coral Sand Extracted |
| Value of Guano Extracted |
Cultural | Service levels and values |
Tourism/Recreation | Swimmable Area (Lagoon Size) |
| Underwater Tourism |
| Nautical Tourism |
| Surfing/Recreational Tourism |
Education/Research | Net Expense on Research |
| Net Expense on Education |
Religious/Spiritual/Indigenous | Cultural Heritage Area |
Ocean Governance | Activities, status, expenditures and value statistics |
Regulation | License Fees/Taxes |
| Taxes on Cultivated Resources |
| Taxes on Natural Resources |
Enforcement | Permit Income |
| Penalties/Fines |
Restoration/Conservation | Area Conserved (no take) |
| Area Conserved (recreational take only) |
| Biomass Restocked (vertebrates) |
| Biomass Restocked (invertebrates) |
Mitigation | Length of Engineered Coastal Barriers |
| Area Geoengineered |
Gross value added by sector | Gross value added of all Ocean Services by sector |
Expenditure | Expenditures on environmental protection and maintenance |
Table 43. Mangrove ecosystem core statistics
Ecosystem Type: Mangroves | |
Category | Statistic |
Ocean Assets |
|
Condition | Overall condition statistics |
Biodiversity | Enhanced Vegetation Index (MODIS Imaging) |
| Percent Tree Cover (MODIS Imaging) |
| Phytoplankton Abundance/Diversity |
Ecosystem Fitness | Percent Tree Cover |
| Leaf Area Index |
| Chlorophyll Absorption (Hyperspectral Imaging) |
| Soil Carbon |
Biogeochemical Cycling | Soil Nitrogen |
| Turbidity |
| Sediment Accumulation:Sea Level Rise |
| Particulate/Dissolved Organic C:N |
| Dissolved Oxygen |
| Soil and Water pH |
Physiochemical Quality | Mean Sea Level |
| Tidal Regime |
| Salinity |
Greenhouse Gas Retention | Methane Flux |
| Carbon Dioxide Flux |
| Sedimentation Rate (Mud Content) |
| Canopy Area Cover (Landsat Images) |
Stock | Overall stock statistics |
Ecosystem Extent | Percent Tree Cover (MODIS Imaging) |
Total Mangrove Area (satellite imaging) | |
Stock of Natural Aquatic Resources | Stocks of planktivorous fish |
(Vertebrates) | Stocks of piscivorous fish |
| Bird abundance/diversity |
Stock of Natural Aquatic Resources | Gross Mangrove Removal |
(Invertebrates) | Macrobenthic Community (Sponges, polychaetes) |
Stock of Cultivated Aquatic Resources | Gross Piscivorous Fish Grown |
(Vertebrates) | Gross Planktivorous Fish Grown |
Stock of Cultivated Aquatic Resources | Oyster Aquaculture |
(Invertebrates) | Shrimp Aquaculture |
Stock of Abiotic Resources | Charcoal Available for Harvest |
| Fuelwood Available for Harvest |
Ocean Services (Flows to the Economy) |
|
Regulating | Conditions affecting flow of service |
Greenhouse Gas Sequestration | Coastal geomorphology |
| Sediment deposition rate |
| Vegetation Type/Density |
Coastal Protection | Sediment Elevation Rate |
| Mangrove Mean Age |
| Mean Sea Level |
| Tidal Height |
| Geomorphic Settings |
Erosion Control | Distance to Human Settlement |
| Sea level rise |
| Vegetation Type/Density |
Water Purification | Mangrove Cover/Distance |
| Sediment Quality |
Nutrient Cycling | Nitrification Rate |
| Biological Oxygen Demand |
| Sulfate Reduction Rate |
Waste Remediation | Mangrove quality and area |
| Mangrove Root Length (aerial exposure) |
| Adjacent Farming Development |
| Shrimp Pond Development |
Pollutant Remediation | Fertilizer Concentrations |
| Dissolved Nutrient Concentrations |
| Trace Metal Concentrations |
Provisioning | Conditions affecting flow of service/economic values |
Maintenance of Fisheries | Fish Catch and value |
| Time Spent Fishing |
| Shrimp/Shrimp Fry Caught |
Cultivated Resources Extracted | Value of Cultivated Vertebrates |
| Value of Cultivated Invertebrates |
Raw Materials Extracted | Fuelwood Harvested and Value |
| Charcoal Harvested and Value |
Cultural | Service levels and values |
Tourism/Recreation | Mangrove Area/Lagoon Size |
| Distance to Human Settlement |
| Tourism Generated Income |
| Recreation Generated Income |
Education/Research | Net Expense on Research |
| Net Expense on Education |
| Education Level |
Religious/Spiritual/Indigenous | Cultural Heritage Area |
Ocean Governance | Activities, status, expenditures and value statistics |
Regulation | License Fees/Taxes |
| Taxes on Cultivated Resources |
| Taxes on Natural Resources |
Enforcement | Permit Income |
| Penalties/Fines |
Restoration/Conservation | Area Conserved (no take) |
| Distance to Industry/Ports |
| Biomass Restocked |
| Post-restoration care |
Mitigation | Length of Engineered Coastal Barriers |
| Area Geoengineered |
Gross value added by sector | Gross value added of all Ocean Services by sector |
Expenditure | Expenditures on environmental protection and maintenance |
Table 44. Kelp Forest ecosystem core statistics
Ecosystem Type: Kelp Forest | |
Category | Statistic |
Ocean Assets |
|
Condition | Overall condition statistics |
Biodiversity | Macroalgae Species Richness |
| Kelp Canopy Biomass (in-situ) |
| Benthic Macroinvertebrate Diversity |
Ecosystem Fitness | Availability of Drift Algae |
| Turf Algae Abundance |
| Urchin Grazing Intensity |
| Ratio of Invasive: Natural kelp species |
| Juvenile Kelp Recruitment Rate |
Biogeochemical Cycling | Nitrate Concentration |
| Ammonium Concentration |
| Kelp Growth Rate |
| Dissolved Oxygen Concentration |
| C13 Stable Isotopes |
| N15 Stable Isotopes |
Physiochemical Quality | Temperature |
| Light availability |
| Salinity |
Greenhouse Gas Retention | Light availability |
| Carbon Storage |
| Kelp Forest Biomass |
Stock | Overall stock statistics |
Ecosystem Extent | Kelp Canopy Cover (in-situ) |
| Total Kelp Forest Area (Satellite) |
Stock of Natural Aquatic Resources | Fish stocks |
(Vertebrates) | – |
Stock of Natural Aquatic Resources | Urchin abundance |
(Invertebrates) | Abalone abundance |
| Lobster abundance |
Stock of Cultivated Aquatic Resources | Gross Piscivorous Fish Grown |
(Vertebrates) | Gross Planktivorous Fish Grown |
Stock of Cultivated Aquatic Resources | Gross Shellfish grown |
(Invertebrates) | Gross Macroalgae Available for Harvested |
Stock of Abiotic Resources | Alginate Available for Extraction |
Ocean Services (Flows to the Economy) |
|
Regulating | Conditions affecting flow of service |
Greenhouse Gas Sequestration | Light Availability |
| Kelp Biomass |
| Kelp Canopy Cover |
Coastal Protection | Coastal geomorphology |
| Kelp Canopy Density |
| Wave fetch |
| Abundance of Urchins (and removed) |
| Storm Frequency |
Erosion Control | Localized Hydrodynamics |
| Distance to Metropolitan Area |
| Kelp Canopy Cover |
Water Purification | Kelp/Macroalgae Abundance |
| Light Availability |
Nutrient Cycling | Kelp Growth Rate |
| Standing Stock of Carbon |
| Light availability |
Waste Remediation | Ratio of Turf:Macroalgae |
| Kelp Canopy Cover |
Pollutant Remediation | Fertilizer Concentrations |
| Fish Farm Runoff |
Provisioning | Conditions affecting flow of service/economic values |
Maintenance of Fisheries | Fish Catch and Value |
| Catch Per Unit Effort |
| Kelp Cover |
Cultivated Resources Extracted | Value of Cultivated Vertebrates |
| Value of Cultivated Macroalgae |
Raw Materials Extracted | Alginate Extracted |
Cultural | Service levels and values |
Tourism/Recreation | Kelp Persistence |
| Scuba Diving Frequency |
| Spatial coverage of Marine Protected Area |
| Recreational Fisheries |
Education/Research | Net Expense on Research |
| Net Expense on Education |
Religious/Spiritual/Indigenous | Cultural Heritage Area |
Ocean Governance | Activities, status, expenditures and value statistics |
Regulation | License Fees/Taxes |
| Taxes on Cultivated Resources |
| Taxes on Natural Resources |
Enforcement | Permit Income |
| Penalties/Fines |
Restoration/Conservation | Transplant costs |
| Invasive Species Abundance |
| Fish Biomass |
| Number/Size of Marine Protected Areas |
Mitigation | Area/Abundance of Urchins Removed |
| Area Restored with Kelp |
Gross value added by sector | Gross value added of all Ocean Services by sector |
Expenditure | Expenditures on environmental protection and maintenance |
Table 45. Seagrass ecosystem core statistics
Ecosystem Type: Seagrasses | |
Category | Statistic |
Ocean Assets |
|
Condition | Overall condition measures |
Biodiversity | Seagrass cover (Satellite imaging) |
| Seagrass diversity/abundance (benthic surveys) |
| Megafauna Abundance Counts (ex: Dugongs) |
Ecosystem Fitness | Vegetation Type (Species Diversity) |
| Seagrass Density (per m2) |
| Sedimentation Rate |
Biogeochemical Cycling | Sediment Redox Potential (mV) |
| Dissolved Organic Carbon Release Rate |
| Inundation Depth |
| C:N Sediment ratios |
| Production: Respiration Ratio (per m2) |
Physiochemical Quality | Water Temperature |
| Light Availability |
| Salinity |
Greenhouse Gas Retention | Nitrification Rate |
| Carbon Dioxide Flux |
| Total Water Storage (per m2) |
| Total Organic Carbon (per m2) |
Stock | Overall stock statistics |
Ecosystem Extent | Seagrass/Vegetation Cover (satellite) |
Total Area of Saline High Tide Extent (satellite) | |
Stock of Natural Aquatic Resources | Artisanal Fishery Catch |
(Vertebrates) | Commercial Fishery Catch |
| Recreational Fish Catch |
Stock of Natural Aquatic Resources | Gross Shellfish Harvested |
(Invertebrates) | Gross Shrimp Harvested |
| Gross Seagrass Harvested |
Stock of Cultivated Aquatic Resources | Gross Planktivorous Fish Grown |
(Vertebrates) |
|
Stock of Cultivated Aquatic Resources | Gross Shellfish Grown |
(Invertebrates) | Gross Shrimp Grown |
Stock of Abiotic Resources | Agricultural Services |
Ocean Services (Flows to the Economy) |
|
Regulating | Conditions affecting flow of service |
Greenhouse Gas Sequestration | Coastal geomorphology |
| Sediment deposition rate |
| Vegetation Cover |
| Seagrass Blade Length |
Coastal Protection | Sedimentation Rate |
| Tidal Range |
| Water Table Height |
| Rooted Plant Cover |
| Storm Frequency |
Erosion Control | Fluvial sediment deposition |
| Sea level rise |
| Growth Form: Submerged |
Water Purification | Aquatic Plant Leaf Size |
| Sediment/Nutrient Load |
| Root Type |
Nutrient Cycling | Nitrification Rate |
| Biological Oxygen Demand |
| Sulphate Reduction Rate |
Waste Remediation | Sediment Organic Carbon Content |
| Sediment Organic Nitrogen Content |
| Fish/Shrimp Farm Wastewater Discharge Rate |
Pollutant Remediation | Terrestrial Runoff Rate |
| Fertilizer Concentrations |
Provisioning | Conditions affecting flow of service/economic value |
Maintenance of Fisheries | Prey Fish Abundance |
| Hydrodynamic Conditions |
| Primary Productivity Rate (Chl a) |
| Vegetation Cover |
Cultivated Resources Extracted | Value of Cultivated Vertebrates |
| Value of Cultivated Invertebrates, Algae, Plants |
Raw Materials Extracted | Agricultural Products |
Cultural | Service levels and values |
Tourism/Recreation | Prey Fish Abundance |
| Hydrodynamic Conditions |
| Primary Productivity Rate (Chl a) |
| Vegetation Cover |
| Value of Cultivated Vertebrates |
Education/Research | Value of Cultivated Invertebrates, Algae, Plants |
| Agricultural Products |
| Prey Fish Abundance |
Religious/Spiritual/Indigenous |
|
Ocean Governance | Activities, status, expenditures and value statistics |
Regulation | License Fees/Taxes |
| Taxes on Cultivated Resources |
| Taxes on Natural Resources |
Enforcement | Permit Income |
| Penalties/Fines |
Restoration/Conservation | Area Conserved (no take) |
| Area Conserved (recreational take only) |
| Biomass Restocked (vertebrates) |
| Biomass Restocked (invertebrates) |
Mitigation | Length of Engineered Coastal Barriers |
| Area Geoengineered |
Gross value added by sector | Gross value added of all Ocean Services by sector |
Expenditure | Expenditures on environmental protection and maintenance |
Table 46. Salt Marsh and Estuary ecosystem core statistics
Ecosystem Type: Salt Marshes and Estuaries | |
Category | Statistic |
Ocean Assets |
|
Condition | Overall condition measures |
Biodiversity | Seagrass/Vegetation Cover |
| Prey Fish Abundance |
| Healthy Predator Populations |
Ecosystem Fitness | Vegetation Type |
| Seagrass Abundance/Cover |
| Plant Height |
Biogeochemical Cycling | Sediment Redox Potential |
| Hypersalinity |
| Inundation Depth |
| C:N Sediment ratios |
| Submerged Plant Growth Form |
Physiochemical Quality | Water Temperature |
| Light Availability |
| Salinity |
Greenhouse Gas Retention | Nitrification Rate |
| Carbon Dioxide Flux |
| Total Water Storage |
| Total Organic Carbon |
Stock | Overall stock statistics |
Ecosystem Extent | Seagrass/Vegetation Cover |
Total Area of Saline High Tide Extent (satellite) | |
Stock of Natural Aquatic Resources | Stock Available for Artisinal Fishery |
(Vertebrates) | Stock of Commercial Fish |
| Stock of Recreational Fish |
Stock of Natural Aquatic Resources | Stock of Shellfish Available for Harvest |
(Invertebrates) | Stock of Shrimp Available for Harvest |
| Stock of Crab Available for Harvest |
Stock of Cultivated Aquatic Resources | Gross Planktivorous Fish Grown |
(Vertebrates) |
|
Stock of Cultivated Aquatic Resources | Gross Shellfish Grown |
(Invertebrates) |
|
Stock of Abiotic Resources | Minerals/Fertilizers Available for Extraction |
Ocean Services (Flows to the Economy) |
|
Regulating | Conditions affecting flow of service |
Greenhouse Gas Sequestration | Coastal geomorphology |
| Sediment deposition rate |
| Vegetation Cover |
| Aquatic Plant Leaf Size |
Coastal Protection | Coastal geomorphology |
| Tidal Range |
| Water Table Height |
| Rooted Plant Cover |
| Storm Frequency |
Erosion Control | Fluvial sediment deposition |
| Sea level rise |
| Growth Form: Submerged |
Water Purification | Aquatic Plant Leaf Size |
| Sediment/Nutrient Load |
| Root Type |
Nutrient Cycling | Nitrification Rate |
| Biological Oxygen Demand |
| Sulfate Reduction Rate |
Waste Remediation | Sediment Organic Carbon Content |
| Sediment Organic Nitrogen Content |
| Terrestrial Runoff Rate |
Pollutant Remediation | Fertilizer Concentrations |
| Sewage Waste Concentrations |
Provisioning | Conditions affecting flow of service/economic value |
Maintenance of Fisheries | Prey Fish Abundance |
| Hydrodynamic Conditions |
| Primary Productivity Rate (Chl a) |
| Vegetation Cover |
Cultivated Resources Extracted | Value of Cultivated Vertebrates |
| Value of Cultivated Invertebrates |
Raw Materials Extracted | Agricultural Products Extracted |
Cultural | Service levels and values |
Tourism/Recreation | Accessible Area for Recreation |
| Water Quality |
| Marine Mammal Tourism |
| Abundance of Visually attractive flora |
| Recreation Generated Income |
Education/Research | Net Expense on Research |
| Net Expense on Education |
| Habitat quality and area |
Religious/Spiritual/Indigenous | Cultural Heritage Area |
Ocean Governance | Activities, status, expenditures and value statistics |
Regulation | License Fees/Taxes |
| Taxes on Cultivated Resources |
| Taxes on Natural Resources |
Enforcement | Permit Income |
| Penalties/Fines |
Restoration/Conservation | Area Conserved (no take) |
| Area Conserved (recreational take only) |
| Biomass Restocked (vertebrates) |
| Biomass Restocked (invertebrates) |
Mitigation | Length of Engineered Coastal Barriers |
| Area Geoengineered |
Gross value added by sector | Gross value added of all Ocean Services by sector |
Expenditure | Expenditures on environmental protection and maintenance |
Table 47. Sediment ecosystem core statistics
Ecosystem Type: Sediment | |
Category | Statistic |
Ocean Assets |
|
Condition | Overall condition statistics |
Biodiversity | Benthic Microbial Community |
| Fish Diversity |
| Infaunal Invertebrate Diversity |
Ecosystem Fitness | Production: Respiration Ratio |
| Sulfate Reduction Rate |
| Sediment Oxygen Profile |
| Nitrification Rate |
Biogeochemical Cycling | Nitrate Concentration |
| Sulfate Concentration |
| Sediment Redox Potential |
| Particulate/Dissolved Organic C:N |
| Dissolved Oxygen |
| pH (total scale) |
Physiochemical Quality | Water Temperature |
| Salinity |
| Mean Sea Level |
Greenhouse Gas Retention | Benthic Production:Respiration Ratio |
| Sediment Permeability |
| Light Availability/Turbidity |
| Average Sea State |
Stock | Overall stock statistics |
Ecosystem Extent | Total Area of Soft Bottom/Sediment (Satellite) |
Stock of Natural Aquatic Resources | Gross benthal fish stock |
(Vertebrates) | Gross infaunal fish stock |
Stock of Natural Aquatic Resources | Gross Sea Cucumber Stock |
(Invertebrates) | Gross Shellfish Stock |
Stock of Cultivated Aquatic Resources | Gross Piscivorous Fish Grown |
(Vertebrates) | Gross Planktivorous Fish Grown |
Stock of Cultivated Aquatic Resources | Gross Shellfish grown |
(Invertebrates) |
|
Stock of Abiotic Resources | Sand Available for Harvest |
Ocean Services (Flows to the Economy) |
|
Regulating | Conditions affecting flow of service |
Greenhouse Gas Sequestration | Coastal geomorphology |
| Sediment deposition rate |
| Sediment Permeability |
| Light availability |
Coastal Protection | Coastal geomorphology |
| Tidal Range |
| Water Table Height |
| Storm Frequency |
Erosion Control | Fluvial sediment deposition |
| Sea level rise |
| Area of physical structure |
Water Purification | Microphytobenthic composition |
Nutrient Cycling | Nitrification Rate |
| Biological Oxygen Demand |
| Sulfate Reduction Rate |
Waste Remediation | Sediment Organic Carbon Content |
| Sediment Organic Nitrogen Content |
| Plastic Pollutant Load |
| Terrestrial Runoff Rate |
Pollutant Remediation | Fertilizer Concentrations |
| PCB Concentrations |
| Trace Metal Concentrations |
Provisioning | Condition affecting flows of service/economic values |
Maintenance of Fisheries | Catch Rate and value |
| Catch Per Unit Effort |
Cultivated Resources Extracted | Value of Cultivated Vertebrates |
| Value of Cultivated Invertebrates |
Raw Materials Extracted | Quantity and Value of Sand Extracted |
Cultural | Service level and values |
Tourism/Recreation | Accessible Area for Recreation |
| Water Quality |
| Tourism Generated Income |
| Recreation Generated Income |
Education/Research | Net Expense on Research |
| Net Expense on Education |
| Habitat quality and area |
Religious/Spiritual/Indigenous | Cultural Heritage Area |
Ocean Governance | Activities, status, expenditures and value statistics |
Regulation | License Fees/Taxes |
| Taxes on Cultivated Resources |
| Taxes on Natural Resources |
Enforcement | Permit Income |
| Penalties/Fines |
Restoration/Conservation | Area Conserved (no take) |
| Area Conserved (recreational take only) |
| Biomass Restocked (vertebrates) |
| Biomass Restocked (invertebrates) |
Mitigation | Length of Engineered Coastal Barriers |
| Area Geoengineered |
Gross value added by sector | Gross value added of all Ocean Services by sector |
Expenditure | Expenditures on environmental protection and maintenance |
Table 48. Open Ocean ecosystem core statistics
Ecosystem Type: Open Ocean | |
Category | Statistic |
Ocean Assets |
|
Condition | Overall condition statistics |
Biodiversity | Megafauna Abundance/Diversity |
| Fish Diversity |
| Plankton abundance |
Ecosystem Fitness | Chlorophyll a concentration |
| Biological Pump Rate |
| Turbidity/Light availability |
Biogeochemical Cycling | Thermocline |
| Pycnocline |
| Vertical Profile: Oxygen |
| Vertical Profile: Nitrate |
| Vertical Profile: pH |
| Vertical Profile: DIC |
Physiochemical Quality | Sea Surface Temperature |
| Sea Surface Salinity |
| Mean Sea Level |
Greenhouse Gas Retention | Plankton Abundance |
| Chlorophyll a Concentration |
| Dissolved Inorganic Carbon Profile |
| Average Sea State |
Stock | Overall stock statistics |
Ecosystem Extent | Total area defined as open ocean (satellite) |
Stock of Natural Aquatic Resources | Gross pelagic fish catch |
(Vertebrates) | Gross piscivorous fish catch |
Stock of Natural Aquatic Resources | Gross shrimp catch |
(Invertebrates) | Gross squid catch |
Stock of Cultivated Aquatic Resources | Gross Pelagic Fish Grown |
(Vertebrates) |
|
Stock of Cultivated Aquatic Resources | Gross Shellfish Grown |
(Invertebrates) | Gross Shrimp Grown |
Stock of Abiotic Resources | Oil/Petroleum Harvested |
| Energy Generated |
Ocean Services (Flows to the Economy) |
|
Regulating | Conditions affecting flow of services |
Greenhouse Gas Sequestration | Average Sea State |
| Chlorophyll a (Satellite) |
| SST (Satellite) |
Coastal Protection | Mean Sea Level |
| Hydrodynamic Barrier Area |
Erosion Control | Water Column Sedimentation Rates |
Water Purification | Plankton Abundance |
| Chlorophyll a Concentration |
Nutrient Cycling | Biological Pump Rate |
| Chlorophyll a Concentration (satellite) |
| Dissolved Inorganic Carbon Profile |
Waste Remediation | Water Column PON |
| Water Column POC |
| Plastic Pollutant Load |
| Terrestrial Runoff Rate |
Pollutant Remediation | Fertilizer Concentrations |
| Microplastic Concentrations |
| Large Plastic Concentrations |
Provisioning | Conditions affecting flow of services/economic values |
Maintenance of Fisheries | Fish Catch and Value |
| Catch Per Unit Effort |
Cultivated Resources Extracted | Value of Cultivated Vertebrates |
| Value of Cultivated Invertebrates |
Raw Materials Extracted | Energy Generated |
| Oil/Petroleum Extracted |
Cultural | Service levels and values |
Tourism/Recreation | Accessible Area for Recreation |
| Water Quality |
| Tourism Generated Income |
| Recreation Generated Income |
Education/Research | Net Expense on Research |
| Net Expense on Education |
Religious/Spiritual/Indigenous | Cultural Heritage Area |
Ocean Governance | Activities, status, expenditures and value statistics |
Regulation | License Fees/Taxes |
| Taxes on Cultivated Resources |
| Taxes on Natural Resources |
Enforcement | Permit Income |
| Penalties/Fines |
Restoration/Conservation | Area Conserved (no take) |
| Area Conserved (recreational take only) |
| Biomass Restocked (vertebrates) |
| Biomass Restocked (invertebrates) |
Mitigation | Length of Engineered Coastal Barriers |
| Area of Hydrodynamic Barriers |
Gross value added by sector | Gross value added of all Ocean Services by sector |
References for Core Ocean Statistics
Coral Reef Ecosystems
Ahmed, M., Chong, C. K., & Cesar, H. (2005). Economic Valuation and Policy Priorities for Sustainable Management of Coral Reefs. https://www.worldfishcenter.org/content/economic-valuation-and-policy-priorities-sustainable-management-coral-reefs
Andersson, A. J., MacKenzie, F. T., & Lerman, A. (2005). Coastal ocean and carbonate systems in the high CO2 world of the anthropocene. American Journal of Science, 305(9), 875–918. https://doi.org/10.2475/ajs.305.9.875
Atkinson, M. J. (2011). Biogeochemistry of nutrients. In Coral Reefs: An Ecosystem in Transition (pp. 199–206). Springer Netherlands. https://doi.org/10.1007/978-94-007-0114-4_13
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. In Ecological Monographs (Vol. 81, Issue 2, pp. 169–193). John Wiley & Sons, Ltd. https://doi.org/10.1890/10-1510.1
Barton, J. A., Willis, B. L., & Hutson, K. S. (2017). Coral propagation: a review of techniques for ornamental trade and reef restoration. Reviews in Aquaculture, 9(3), 238–256. https://doi.org/10.1111/raq.12135
Bates, N. R. (2017). Twenty years of marine carbon cycle observations at Devils Hole Bermuda provide insights into seasonal hypoxia, coral reef calcification, and ocean acidification. Frontiers in Marine Science, 4(FEB), 36. https://doi.org/10.3389/fmars.2017.00036
Beck, M. W., Losada, I. J., Menéndez, P., Reguero, B. G., Díaz-Simal, P., & Fernández, F. (2018). The global flood protection savings provided by coral reefs. Nature Communications, 9(1), 1–9. https://doi.org/10.1038/s41467-018-04568-z
Bell, P. R. F. (1992). Eutrophication and coral reefs-some examples in the Great Barrier Reef lagoon. Water Research, 26(5), 553–568. https://doi.org/10.1016/0043-1354(92)90228-V
Brander, L. M., Van Beukering, P., & Cesar, H. S. J. (2007). The recreational value of coral reefs: A meta-analysis. Ecological Economics, 63(1), 209–218. https://doi.org/10.1016/j.ecolecon.2006.11.002
Brown, B. E., & Dunne, R. P. (2015). Coral Bleaching: The Roles of Sea Temperature and Solar Radiation. In Diseases of Coral (pp. 266–283). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118828502.ch18
Burke, L., Greenhalgh, S., Prager, D., & Cooper, E. (2008). Coastal capital: economic valuation of coral reefs in Tobago and St. Lucia. Coastal Capital: Economic Valuation of Coral Reefs in Tobago and St. Lucia., 66. http://www.wri.org/publication/coastal-capital
Cesar, H., Burke, L., & Pet-soede, L. (2003). The Economics of Worldwide Coral Reef Degradation. Cesar Environmental Economics Consulting, Arnhem, and WWF-Netherlands, 14, 23. http://eprints.eriub.org/48/
Cesar, H. S. J., & van Beukering, P. J. H. (2004). Economic valuation of the coral reefs of Hawai’i. Pacific Science, 58(2), 231–242. https://doi.org/10.1353/psc.2004.0014
Chan, N. C. S., & Connolly, S. R. (2013). Sensitivity of coral calcification to ocean acidification: a meta-analysis. Global Change Biology, 19(1), 282–290. https://doi.org/10.1111/gcb.12011
Cinner, J. E., Huchery, C., MacNeil, M. A., Graham, N. A. J., McClanahan, T. R., Maina, J., Maire, E., Kittinger, J. N., Hicks, C. C., Mora, C., Allison, E. H., D’Agata, S., Hoey, A., Feary, D. A., Crowder, L., Williams, I. D., Kulbicki, M., Vigliola, L., Wantiez, L., … Mouillot, D. (2016). Bright spots among the world’s coral reefs. Nature, 535(7612), 416–419. https://doi.org/10.1038/nature18607
Comeau, S., Edmunds, P. J., Lantz, C. A., & Carpenter, R. C. (2014). Water flow modulates the response of coral reef communities to ocean acidification. Scientific Reports, 4(1), 6681. https://doi.org/10.1038/srep06681
Cyronak, T., Andersson, A. J., Langdon, C., Albright, R., Bates, N. R., Caldeira, K., Carlton, R., Corredor, J. E., Dunbar, R. B., Enochs, I., Erez, J., Eyre, B. D., Gattuso, J.-P., Gledhill, D., Kayanne, H., Kline, D. I., Koweek, D. A., Lantz, C., Lazar, B., … Yamamoto, S. (2018). Taking the metabolic pulse of the world’s coral reefs. PloS One, 13(1), e0190872. https://doi.org/10.1371/journal.pone.0190872
De’Ath, G., Fabricius, K. E., Sweatman, H., & Puotinen, M. (2012). The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences of the United States of America, 109(44), 17995–17999. https://doi.org/10.1073/pnas.1208909109
Dennison, W. C., & Barnes, D. J. (1988). Effect of water motion on coral photosynthesis and calcification. Journal of Experimental Marine Biology and Ecology, 115(1), 67–77. https://doi.org/10.1016/0022-0981(88)90190-6
Drupp, P., De Carlo, E. H., Mackenzie, F. T., Bienfang, P., & Sabine, C. L. (2011). Nutrient Inputs, Phytoplankton Response, and CO2 Variations in a Semi-Enclosed Subtropical Embayment, Kaneohe Bay, Hawaii. Aquatic Geochemistry, 17(4–5), 473–498. https://doi.org/10.1007/s10498-010-9115-y
Edinger, E. N., Jompa, J., Limmon, G. V, Widjatmoko, W., & Risk, M. J. (1998). Reef degradation and coral biodiversity in Indonesia: Effects of land-based pollution, destructive fishing practices and changes over time. Marine Pollution Bulletin, 36(8), 617–630. https://doi.org/10.1016/S0025-326X(98)00047-2
Eyre, B. D., Cyronak, T., Drupp, P., De Carlo, E. H., Sachs, J. P., & Andersson, A. J. (2018). Coral reefs will transition to net dissolving before end of century. Science (New York, N.Y.), 359(6378), 908–911. https://doi.org/10.1126/science.aao1118
Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. In Marine Pollution Bulletin (Vol. 50, Issue 2, pp. 125–146). https://doi.org/10.1016/j.marpolbul.2004.11.028
Frankignoulle, M., Canon, C., & Gattuso, J.-P. (1994). Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO 2. Limnology and Oceanography, 39(2), 458–462. https://doi.org/10.4319/lo.1994.39.2.0458
Gattuso, J. P., Pichon, M., Delesalle, B., Canon, C., & Frankignoulle, M. (1996). Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecology Progress Series, 145(1–3), 109–121. https://doi.org/10.3354/meps145109
Haas, A. F., Nelson, C. E., Kelly, L. W., Carlson, C. A., Rohwer, F., Leichter, J. J., Wyatt, A., & Smith, J. E. (2011). Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE, 6(11), e27973. https://doi.org/10.1371/journal.pone.0027973
Hochberg, E. J. (2011). Remote sensing of coral reef processes. In Coral Reefs: An Ecosystem in Transition (pp. 25–35). Springer Netherlands. https://doi.org/10.1007/978-94-007-0114-4_3
Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., de Crook, E., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., & Martz, T. R. (2011). High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE, 6(12), e28983. https://doi.org/10.1371/journal.pone.0028983
Kinsey, D. W., & Davies, P. J. (1979). Carbon turnover, calcification and growth in coral reefs. Studies in Environmental Science, 3(C), 131–162. https://doi.org/10.1016/S0166-1116(08)71057-4
Kittinger, J. N., Bambico, T. M., Minton, D., Miller, A., Mejia, M., Kalei, N., Wong, B., & Glazier, E. W. (2013). Restoring ecosystems, restoring community: socioeconomic and cultural dimensions of a community-based coral reef restoration project. Regional Environmental Change 2013 16:2, 16(2), 301–313. https://doi.org/10.1007/S10113-013-0572-X
Kleypas, J. A., Buddemeier, R. W., & Gattuso, J. P. (2001). The future of Coral reefs in an age of global change. International Journal of Earth Sciences, 90(2), 426–437. https://doi.org/10.1007/s005310000125
Koop, K., Booth, D., Broadbent, A., Brodie, J., Bucher, D., Capone, D., Coll, J., Dennison, W., Erdmann, M., Harrison, P., Hoegh-Guldberg, O., Hutchings, P., Jones, G. B., Larkum, A. W. D., O’Neil, J., Steven, A., Tentori, E., Ward, S., Williamson, J., & Yellowlees, D. (2001). ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Marine Pollution Bulletin, 42(2), 91–120. https://doi.org/10.1016/S0025-326X(00)00181-8
Lantz, C. A., Atkinson, M. J., Winn, C. W., & Kahng, S. E. (2014). Dissolved inorganic carbon and total alkalinity of a Hawaiian fringing reef: Chemical techniques for monitoring the effects of ocean acidification on coral reefs. Coral Reefs, 33(1), 105–115. https://doi.org/10.1007/s00338-013-1082-5
Laurans, Y., Pascal, N., Binet, T., Brander, L., Clua, E., David, G., Rojat, D., & Seidl, A. (2013). Economic valuation of ecosystem services from coral reefs in the South Pacific: Taking stock of recent experience. Journal of Environmental Management, 116, 135–144. https://doi.org/10.1016/j.jenvman.2012.11.031
Mallela, J., & Perry, C. T. (2007). Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica. Coral Reefs, 26(1), 129–145. https://doi.org/10.1007/s00338-006-0169-7
Mass, T., Genin, A., Shavit, U., Grinstein, M., & Tchernov, D. (2010). Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Sciences, 107(6), 2527–2531. https://doi.org/10.1073/pnas.0912348107
McCook, L. J. (1999). Macroalgae, nutrients and phase shifts on coral reefs: Scientific issues and management consequences for the Great Barrier Reef. In Coral Reefs (Vol. 18, Issue 4, pp. 357–367). Springer-Verlag. https://doi.org/10.1007/s003380050213
Moberg, F., & Folke, C. (1999). Ecological goods and services of coral reef ecosystems. Ecological Economics, 29(2), 215–233. https://doi.org/10.1016/S0921-8009(99)00009-9
Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science (New York, N.Y.), 328(5985), 1517–1520. https://doi.org/10.1126/science.1185782
Orlando, J. L., & Yee, S. H. (2016, March 23). Linking Terrigenous Sediment Delivery to Declines in Coral Reef Ecosystem Services. Estuaries and Coasts, 40(2), 1–17. https://doi.org/10.1007/s12237-016-0167-0
Pascal, N., Allenbach, M., Brathwaite, A., Burke, L., Le Port, G., & Clua, E. (2016). Economic valuation of coral reef ecosystem service of coastal protection: A pragmatic approach. Ecosystem Services, 21, 72–80. https://doi.org/10.1016/j.ecoser.2016.07.005
Perry, C. T., Alvarez-Filip, L., Graham, N. A. J., Mumby, P. J., Wilson, S. K., Kench, P. S., Manzello, D. P., Morgan, K. M., Slangen, A. B. A., Thomson, D. P., Januchowski-Hartley, F., Smithers, S. G., Steneck, R. S., Carlton, R., Edinger, E. N., Enochs, I. C., Estrada-Saldívar, N., Haywood, M. D. E., Kolodziej, G., … Macdonald, C. (2018). Loss of coral reef growth capacity to track future increases in sea level. Nature, 558(7710), 396–400. https://doi.org/10.1038/s41586-018-0194-z
Robles-Zavala, E., & Chang Reynoso, A. G. (2018). The recreational value of coral reefs in the Mexican Pacific. Ocean and Coastal Management, 157, 1–8. https://doi.org/10.1016/j.ocecoaman.2018.02.010
Shamberger, K. E. F., Feely, R. A., Sabine, C. L., Atkinson, M. J., DeCarlo, E. H., Mackenzie, F. T., Drupp, P. S., & Butterfield, D. A. (2011). Calcification and organic production on a Hawaiian coral reef. Marine Chemistry, 127(1–4), 64–75. https://doi.org/10.1016/J.MARCHEM.2011.08.003
Silverman, J., Lazar, B., Cao, L., Caldeira, K., & Erez, J. (2009). Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters, 36(5), L05606. https://doi.org/10.1029/2008GL036282
Spalding, M., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., & zu Ermgassen, P. (2017). Mapping the global value and distribution of coral reef tourism. Marine Policy, 82, 104–113. https://doi.org/10.1016/j.marpol.2017.05.014
Suzuki, A., & Kawahata, H. (2003). Carbon budget of coral reef systems: An overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions. Tellus, Series B: Chemical and Physical Meteorology, 55(2), 428–444. https://doi.org/10.1034/j.1600-0889.2003.01442.x
Van Zanten, B. T., Van Beukering, P. J. H., & Wagtendonk, A. J. (2014). Coastal protection by coral reefs: A framework for spatial assessment and economic valuation. Ocean and Coastal Management, 96, 94–103. https://doi.org/10.1016/j.ocecoaman.2014.05.001
Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J., & Graham, N. A. J. (2019). Coral reef ecosystem services in the Anthropocene. Functional Ecology, 33(6), 1023–1034. https://doi.org/10.1111/1365-2435.13331
Yeakel, K. L., Andersson, A. J., Bates, N. R., Noyes, T. J., Collins, A., & Garley, R. (2015). Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity. Proceedings of the National Academy of Sciences, 112(47), 14512–14517. https://doi.org/10.1073/pnas.1507021112
Mangrove Ecosystems
Adeel, Z., & Pomeroy, R. (2002). Assessment and management of mangrove ecosystems in developing countries. Trees - Structure and Function, 16(2–3), 235–238. https://doi.org/10.1007/s00468-002-0168-4
Alongi, D. M., & de Carvalho, N. A. (2008). The effect of small-scale logging on stand characteristics and soil biogeochemistry in mangrove forests of Timor Leste. Forest Ecology and Management, 255(3–4), 1359–1366. https://doi.org/10.1016/j.foreco.2007.10.051
Balke, T., & Friess, D. A. (2016). Geomorphic knowledge for mangrove restoration: a pan-tropical categorization. Earth Surface Processes and Landforms, 41(2), 231–239. https://doi.org/10.1002/esp.3841
Bandaranayake, W. M. (1998). Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes, 2(3), 133–148. https://doi.org/10.1023/A:1009988607044
Blasco, F., Saenger, P., & Janodet, E. (1996). Mangroves as indicators of coastal change. Catena, 27(3–4), 167–178. https://doi.org/10.1016/0341-8162(96)00013-6
Chellamani, P., Prakash Singh, C., & Panigrahy, S. (2014). Assessment of the health status of Indian mangrove ecosystems using multi temporal remote sensing data. Tropical Ecology, 55(2), 245–253. www.tropecol.com
Chowdhury, A., & Maiti, S. K. (2016). Assessing the ecological health risk in a conserved mangrove ecosystem due to heavy metal pollution: A case study from Sundarbans Biosphere Reserve, India. Human and Ecological Risk Assessment, 22(7), 1519–1541. https://doi.org/10.1080/10807039.2016.1190636
Ellis, J., Nicholls, P., Craggs, R., Hofstra, D., & Hewitt, J. (2004). Effect of terrigenous sedimentation on mangrove physiology and associated macrobenthic communities. Marine Ecology Progress Series, 270, 71–82. https://doi.org/10.3354/meps270071
Ellison, A. M. (2000). Mangrove restoration: Do we know enough? Restoration Ecology, 8(3), 219–229. https://doi.org/10.1046/j.1526-100X.2000.80033.x
Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management, 23(2), 115–137. https://doi.org/10.1007/s11273-014-9397-8
Faridah-Hanum, I., Yusoff, F. M., Fitrianto, A., Ainuddin, N. A., Gandaseca, S., Zaiton, S., Norizah, K., Nurhidayu, S., Roslan, M. K., Hakeem, K. R., Shamsuddin, I., Adnan, I., Awang Noor, A. G., Balqis, A. R. S., Rhyma, P. P., Siti Aminah, I., Hilaluddin, F., Fatin, R., & Harun, N. Z. N. (2019). Development of a comprehensive mangrove quality index (MQI) in Matang Mangrove: Assessing mangrove ecosystem health. Ecological Indicators, 102, 103–117. https://doi.org/10.1016/j.ecolind.2019.02.030
Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: A review. In Aquatic Botany (Vol. 89, Issue 2, pp. 237–250). Elsevier. https://doi.org/10.1016/j.aquabot.2007.12.009
Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x
Gunawardena, M., & Rowan, J. S. (2005). Economic valuation of a mangrove ecosystem threatened by shrimp aquaculture in Sri Lanka. Environmental Management, 36(4), 535–550. https://doi.org/10.1007/s00267-003-0286-9
Hackney, C., Carrie, R., Tan Van, D., Ahmed, J., Teasdale, S., Quinn, C., Stringer, L., Le, H. van T., Nguyen, Q. H., Thanh, N. P. T., & Parsons, D. (2020). Impact of mangrove age on sediment retention and wave dissipation and its links to ecosystem services in the Red River Delta, Vietnam. EGUGA, 9089. https://ui.adsabs.harvard.edu/abs/2020EGUGA..22.9089H/abstract
Holguin, G., Gonzalez-Zamorano, P., de-Bashan, L. E., Mendoza, R., Amador, E., & Bashan, Y. (2006). Mangrove health in an arid environment encroached by urban development-a case study. Science of the Total Environment, 363(1–3), 260–274. https://doi.org/10.1016/j.scitotenv.2005.05.026
Ishtiaque, A., Myint, S. W., & Wang, C. (2016). Examining the ecosystem health and sustainability of the world’s largest mangrove forest using multi-temporal MODIS products. Science of the Total Environment, 569–570, 1241–1254. https://doi.org/10.1016/j.scitotenv.2016.06.200
Kairo, J. G., Wanjiru, C., & Ochiewo, J. (2009). Net pay: Economic analysis of a replanted mangrove plantation in Kenya. Journal of Sustainable Forestry, 28(3–5), 395–414. https://doi.org/10.1080/10549810902791523
Kaly, U. L. (1998). Mangrove restoration: A potential tool for coastal management in tropical developing countries. Ambio, 27(8), 656–661. https://doi.org/10.2307/4314812
Kamali, B., & Hashim, R. (2011). Mangrove restoration without planting. Ecological Engineering, 37(2), 387–391. https://doi.org/10.1016/j.ecoleng.2010.11.025
Kibria, A. S. M. G., Costanza, R., Groves, C., & Behie, A. M. (2018). The interactions between livelihood capitals and access of local communities to the forest provisioning services of the Sundarbans Mangrove Forest, Bangladesh. Ecosystem Services, 32, 41–49. https://doi.org/10.1016/j.ecoser.2018.05.003
Kodikara, K. A. S., Mukherjee, N., Jayatissa, L. P., Dahdouh-Guebas, F., & Koedam, N. (2017). Have mangrove restoration projects worked? An in-depth study in Sri Lanka. Restoration Ecology, 25(5), 705–716. https://doi.org/10.1111/rec.12492
Lovelock, C. E., Ball, M. C., Martin, K. C., & C. Feller, I. (2009). Nutrient Enrichment Increases Mortality of Mangroves. PLoS ONE, 4(5), e5600. https://doi.org/10.1371/journal.pone.0005600
Lovelock, C. E., & Brown, B. M. (2019). Land tenure considerations are key to successful mangrove restoration. In Nature Ecology and Evolution (Vol. 3, Issue 8, p. 1135). Nature Publishing Group. https://doi.org/10.1038/s41559-019-0942-y
M. Brander, L., J. Wagtendonk, A., S. Hussain, S., McVittie, A., Verburg, P. H., de Groot, R. S., & van der Ploeg, S. (2012). Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosystem Services, 1(1), 62–69. https://doi.org/10.1016/j.ecoser.2012.06.003
Mcleod, E., & Salm, R. V. (n.d.). Managing Mangroves for Resilience to Climate Change IUCN Global Marine Programme. www.nature.org/marine.
Peng, Y., Chen, G., Li, S., Liu, Y., & Pernetta, J. C. (2013). Use of degraded coastal wetland in an integrated mangrove-aquaculture system: A case study from the South China Sea. Ocean and Coastal Management, 85, 209–213. https://doi.org/10.1016/j.ocecoaman.2013.04.008
Samonte-Tan, G. P. B., White, A. T., Tercero, M. A., Diviva, J., Tabara, E., & Caballes, C. (2007). Economic valuation of coastal and marine resources: Bohol Marine Triangle, Philippines. Coastal Management, 35(2–3), 319–338. https://doi.org/10.1080/08920750601169634
Sathirathai, S., & Barbier, E. B. (2001). Valuing mangrove conservation in Southern Thailand. Contemporary Economic Policy, 19(2), 109–122. https://doi.org/10.1111/j.1465-7287.2001.tb00054.x
Thom, B. G. (1982). Mangrove ecology - A geomorphological perspective. In Mangrove ecosystems in Australia: structure, function and management (pp. 3–17). A. N. U. Press. https://ci.nii.ac.jp/naid/10003518183
Vaghela, B. N., Parmar, M. G., Solanki, H. A., Kansara, B. B., Prajapati, S. K., & Kalubarme, M. H. (2018). Multi Criteria Decision Making (MCDM) Approach for Mangrove Health Assessment using Geo-informatics Technology. International Journal of Environment and Geoinformatics, 5(2), 114–131. https://doi.org/10.30897/ijegeo.412511
Zhang, C., Kovacs, J., Liu, Y., Flores-Verdugo, F., & Flores-de-Santiago, F. (2014). Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican Pacific. Remote Sensing, 6(12), 11673–11688. https://doi.org/10.3390/rs61211673
Kelp Forest Ecosystems
Araújo, R. M., Assis, J., Aguillar, R., Airoldi, L., Bárbara, I., Bartsch, I., Bekkby, T., Christie, H., Davoult, D., Derrien-Courtel, S., Fernandez, C., Fredriksen, S., Gevaert, F., Gundersen, H., Le Gal, A., Lévêque, L., Mieszkowska, N., Norderhaug, K. M., Oliveira, P., … Sousa-Pinto, I. (2016). Status, trends and drivers of kelp forests in Europe: an expert assessment. Biodiversity and Conservation, 25(7), 1319–1348. https://doi.org/10.1007/s10531-016-1141-7
Bearham, D., Vanderklift, M., & Gunson, J. (2013). Temperature and light explain spatial variation in growth and productivity of the kelp Ecklonia radiata. Marine Ecology Progress Series, 476, 59–70. https://doi.org/10.3354/meps10148
Bell, T. W., Allen, J. G., Cavanaugh, K. C., & Siegel, D. A. (2020). Three decades of variability in California’s giant kelp forests from the Landsat satellites. Remote Sensing of Environment, 238, 110811. https://doi.org/10.1016/j.rse.2018.06.039
Bennett, S., Wernberg, T., Connell, S. D., Hobday, A. J., Johnson, C. R., & Poloczanska, E. S. (2016). The “Great Southern Reef”: Social, ecological and economic value of Australia’s neglected kelp forests. Marine and Freshwater Research, 67(1), 47–56. https://doi.org/10.1071/MF15232
Blamey, L. K., & Bolton, J. J. (2018). The economic value of South African kelp forests and temperate reefs: Past, present and future. Journal of Marine Systems, 188, 172–181. https://doi.org/10.1016/j.jmarsys.2017.06.003
Borras-Chavez, R., Edwards, M. S., Arvizu-Higuera, D. L., Rodríguez-Montesinos, Y. E., Hernández-Carmona, G., & Briceño-Domínguez, D. (2016). Repetitive harvesting of Macrocystis pyrifera (Phaeophyceae) and its effects on chemical constituents of economic value. Botanica Marina, 59(1), 63–71. https://doi.org/10.1515/bot-2015-0028
Buschmann, A. H., Riquelme, V. A., Hernández-González, M. C., Varela, D., Jiménez, J. E., Henríquez, L. A., Vergara, P. A., Guíñez, R., & Filún, L. (2006). A review of the impacts of salmonid farming on marine coastal ecosystems in the southeast Pacific. ICES Journal of Marine Science, 63(7), 1338–1345. https://doi.org/10.1016/j.icesjms.2006.04.021
Caselle, J. E., Rassweiler, A., Hamilton, S. L., & Warner, R. R. (2015). Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Scientific Reports, 5(1), 1–14. https://doi.org/10.1038/srep14102
Connell, S., Russell, B., Turner, D., Shepherd, S., Kildea, T., Miller, D., Airoldi, L., & Cheshire, A. (2008). Recovering a lost baseline: missing kelp forests from a metropolitan coast. Marine Ecology Progress Series, 360, 63–72. https://doi.org/10.3354/meps07526
Eckman, J. E., Duggins, D. O., & Sewell, A. T. (1989). Ecology of under story kelp environments. I. Effects of kelps on flow and particle transport near the bottom. Journal of Experimental Marine Biology and Ecology, 129(2), 173–187. https://doi.org/10.1016/0022-0981(89)90055-5
Filbee-Dexter, K., & Wernberg, T. (2018). Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests. BioScience, 68(2), 64–76. https://doi.org/10.1093/biosci/bix147
Fram, J. P., Stewart, H. L., Brzezinski, M. A., Gaylord, B., Reed, D. C., Williams, S. L., & MacIntyre, S. (2008). Physical pathways and utilization of nitrate supply to the giant kelp, Macrocystis pyrifera. Limnology and Oceanography, 53(4), 1589–1603. https://doi.org/10.4319/lo.2008.53.4.1589
Gagné, J. A., Mann, K. H., & Chapman, A. R. O. (1982). Seasonal patterns of growth and storage in Laminaria longicruris in relation to differing patterns of availability of nitrogen in the water. Marine Biology, 69(1), 91–101. https://doi.org/10.1007/BF00396965
Gann, G. D., McDonald, T., Walder, B., Aronson, J., Nelson, C. R., Jonson, J., Hallett, J. G., Eisenberg, C., Guariguata, M. R., Liu, J., Hua, F., Echeverría, C., Gonzales, E., Shaw, N., Decleer, K., & Dixon, K. W. (2019). International principles and standards for the practice of ecological restoration. Second edition. Restoration Ecology, 27(S1), S1–S46. https://doi.org/10.1111/rec.13035
Halpern, B. S., Cottenie, K., & Broitman, B. R. (2006). Strong top-down control in Southern California kelp forest ecosystems. Science, 312(5777), 1230–1232. https://doi.org/10.1126/science.1128613
Hamilton, S. L., Bell, T. W., Watson, J. R., Grorud‐Colvert, K. A., & Menge, B. A. (2020). Remote sensing: generation of long‐term kelp bed data sets for evaluation of impacts of climatic variation. Ecology, 101(7). https://doi.org/10.1002/ecy.3031
Hamilton, S. L., Caselle, J. E., Lantz, C. A., Egloff, T. L., Kondo, E., Newsome, S. D., Loke-Smith, K., Pondella, D. J., Young, K. A., & Lowe, C. G. (2011). Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs. Marine Ecology Progress Series, 429, 227–244. https://doi.org/10.3354/meps09086
Harrold, C., & Reed, D. C. (1985). Food availability, sea urchin grazing, and kelp forest community structure. Ecology, 66(4), 1160–1169. https://doi.org/10.2307/1939168
Krumhansl, K. A., Okamoto, D. K., Rassweiler, A., Novak, M., Bolton, J. J., Cavanaugh, K. C., Connell, S. D., Johnson, C. R., Konar, B., Ling, S. D., Micheli, F., Norderhaug, K. M., Pérez-Matus, A., Sousa-Pinto, I., Reed, D. C., Salomon, A. K., Shears, N. T., Wernberg, T., Anderson, R. J., … Byrnes, J. E. K. (2016). Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13785–13790. https://doi.org/10.1073/pnas.1606102113
Layton, C., Coleman, M. A., Marzinelli, E. M., Steinberg, P. D., Swearer, S. E., Vergés, A., Wernberg, T., & Johnson, C. R. (2020). Kelp Forest Restoration in Australia. Frontiers in Marine Science, 7, 74. https://doi.org/10.3389/fmars.2020.00074
Menzel, S., Kappel, C. V., Broitman, B. R., Micheli, F., & Rosenberg, A. A. (2013). Linking human activity and ecosystem condition to inform marine ecosystem based management. Aquatic Conservation: Marine and Freshwater Ecosystems, 23(4), 506–514. https://doi.org/10.1002/aqc.2365
Miller, R. J., Lafferty, K. D., Lamy, T., Kui, L., Rassweiler, A., & Reed, D. C. (2018). Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proceedings of the Royal Society B: Biological Sciences, 285(1874), 20172571. https://doi.org/10.1098/rspb.2017.2571
North, W. J. (1976). Aquacultural Techniques for Creating and Restoring Beds of Giant Kelp, Macrocystis spp. . Journal of the Fisheries Research Board of Canada, 33(4), 1015–1023. https://doi.org/10.1139/f76-129
Page, H., Reed, D., Brzezinski, M., Melack, J., & Dugan, J. (2008). Assessing the importance of land and marine sources of organic matter to kelp forest food webs. Marine Ecology Progress Series, 360, 47–62. https://doi.org/10.3354/meps07382
Reed, D. C., Nelson, J. C., Harrer, S. L., & Miller, R. J. (2016). Estimating biomass of benthic kelp forest invertebrates from body size and percent cover data. Marine Biology, 163(5), 1–6. https://doi.org/10.1007/s00227-016-2879-x
Rogers-Bennett, L., & Catton, C. A. (2019). Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-51114-y
Smale, D. A., Burrows, M. T., Evans, A. J., King, N., Sayer, M. D. J., Yunnie, A. L. E., & Moore, P. J. (2016). Linking environmental variables with regionalscale variability in ecological structure and standing stock of carbon within UK kelp forests. Marine Ecology Progress Series, 542, 79–95. https://doi.org/10.3354/meps11544
Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N., & Hawkins, S. J. (2013). Threats and knowledge gaps for ecosystem services provided by kelp forests: A northeast Atlantic perspective. Ecology and Evolution, 3(11), 4016–4038. https://doi.org/10.1002/ece3.774
Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson, J. M., Estes, J. A., & Tegner, M. J. (2002). Kelp forest ecosystems: Biodiversity, stability, resilience and future. In Environmental Conservation (Vol. 29, Issue 4, pp. 436–459). Cambridge University Press. https://doi.org/10.1017/S0376892902000322
Stévant, P., Rebours, C., & Chapman, A. (2017). Seaweed aquaculture in Norway: recent industrial developments and future perspectives. In Aquaculture International (Vol. 25, Issue 4, pp. 1373–1390). Springer International Publishing. https://doi.org/10.1007/s10499-017-0120-7
Vásquez, J. A., Zuñiga, S., Tala, F., Piaget, N., Rodríguez, D. C., & Vega, J. M. A. (2014). Economic valuation of kelp forests in northern Chile: values of goods and services of the ecosystem. Journal of Applied Phycology, 26(2), 1081–1088. https://doi.org/10.1007/s10811-013-0173-6
Wernberg, T., Krumhansl, K., Filbee-Dexter, K., & Pedersen, M. F. (2018). Status and trends for the world’s kelp forests. In World Seas: An Environmental Evaluation Volume III: Ecological Issues and Environmental Impacts (pp. 57–78). Elsevier. https://doi.org/10.1016/B978-0-12-805052-1.00003-6
Zimmerman, R. C., & Kremer, J. N. (1984). Episodic Nutrient Supply To a Kelp Forest Ecosystem in Southern California. Journal of Marine Research, 42(3), 591–604. https://doi.org/10.1357/002224084788506031
Seagrass, Estuary and Salt Marsh Ecosystems
Barbier, E. B. (2015). Valuing the storm protection service of estuarine and coastal ecosystems. Ecosystem Services, 11, 32–38. https://doi.org/10.1016/j.ecoser.2014.06.010
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. In Ecological Monographs (Vol. 81, Issue 2, pp. 169–193). John Wiley & Sons, Ltd. https://doi.org/10.1890/10-1510.1
Bell, F. W. (1997). The economic valuation of saltwater marsh supporting marine recreational fishing in the southeastern United States. Ecological Economics, 21(3), 243–254. https://doi.org/10.1016/S0921-8009(96)00105-X
Birol, E., & Cox, V. (2007). Using choice experiments to design wetland management programmes: The case of Severn Estuary Wetland, UK. Journal of Environmental Planning and Management, 50(3), 363–380. https://doi.org/10.1080/09640560701261661
Boxall, P. C., Adamowicz, W. L., Olar, M., West, G. E., & Cantin, G. (2012). Analysis of the economic benefits associated with the recovery of threatened marine mammal species in the Canadian St. Lawrence Estuary. Marine Policy, 36(1), 189–197. https://doi.org/10.1016/j.marpol.2011.05.003
Breaux, A., Farber, S., & Day, J. (1995). Using natural coastal wetlands systems for wastewater treatment: An economic benefit analysis. In Journal of Environmental Management (Vol. 44, Issue 3). https://doi.org/10.1006/jema.1995.0046
de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D., Berg, M. P., Cipriotti, P., Feld, C. K., Hering, D., da Silva, P. M., Potts, S. G., Sandin, L., Sousa, J. P., Storkey, J., Wardle, D. A., & Harrison, P. A. (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19(10), 2873–2893. https://doi.org/10.1007/s10531-010-9850-9
Freeman, A. M. (1991). Valuing environmental resources under alternative management regimes. Ecological Economics, 3(3), 247–256. https://doi.org/10.1016/0921-8009(91)90035-D
GarcíA-Llorente, M., MartíN-López, B., Díaz, S., & Montes, C. (2011). Can ecosystem properties be fully translated into service values? an economic valuation of aquatic plant services. Ecological Applications, 21(8), 3083–3103. https://doi.org/10.1890/10-1744.1
Ghermandi, A., Nunes, P. A. L. D., Portela, R., Nalini, R., & Teelucksingh, S. S. (2011). Recreational, Cultural and Aesthetic Services from Estuarine and Coastal Ecosystems. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1532803
Gregory, R., & Wellman, K. (2001). Bringing stakeholder values into environmental policy choices: A community-based estuary case study. Ecological Economics, 39(1), 37–52. https://doi.org/10.1016/S0921-8009(01)00214-2
Hosack, G. R., Dumbauld, B. R., Ruesink, J. L., & Armstrong, D. A. (2006). Habitat associations of estuarine species: Comparisons of intertidal mudflat, seagrass (Zostera marina), and oyster (Crassostrea gigas) habitats. Estuaries and Coasts, 29(6), 1150–1160. https://doi.org/10.1007/BF02781816
Howarth, R. W. (1998). An assessment of human influences on fluxes of nitrogen from the terrestrial landscape to the estuaries and continental shelves of the North Atlantic Ocean. Nutrient Cycling in Agroecosystems, 52(2–3), 213–223. https://doi.org/10.1023/a:1009784210657
Johnston, R. J., Grigalunas, T. A., Opaluch, J. J., Mazzotta, M., & Diamantedes, J. (2002). Valuing estuarine resource services using economic and ecological models: The Peconic Estuary System study. Coastal Management, 30(1), 47–65. https://doi.org/10.1080/08920750252692616
Kendal, D., Williams, K., & Armstrong, L. (2008). Preference for and performance of some Australian native plants grown as hedges. Urban Forestry and Urban Greening, 7(2), 93–106. https://doi.org/10.1016/j.ufug.2008.02.002
King, S. E., & Lester, J. N. (1995). The value of salt marsh as a sea defence. Marine Pollution Bulletin, 30(3), 180–189. https://doi.org/10.1016/0025-326X(94)00173-7
Kragt, M. E., Newham, L. T. H., Bennett, J., & Jakeman, A. J. (2011). An integrated approach to linking economic valuation and catchment modelling. Environmental Modelling and Software, 26(1), 92–102. https://doi.org/10.1016/j.envsoft.2010.04.002
Kramer, R. a. (2005). Economic Tools for Valuing Freshwater and Estuarine Ecosystem Services (Issue June). https://www.researchgate.net/publication/237584446
Lacoul, P., & Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. In Environmental Reviews (Vol. 14, Issue 2, pp. 89–136). NRC Research Press Ottawa, Canada . https://doi.org/10.1139/A06-001
Lotze, H. K. (2006). Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science, 312(5781), 1806–1809. https://doi.org/10.1126/science.1128035
Lynne, G. D., Conroy, P., & Prochaska, F. J. (1981). Economic valuation of marsh areas for marine production processes. Journal of Environmental Economics and Management, 8(2), 175–186. https://doi.org/10.1016/0095-0696(81)90006-1
McArthur, L. C., & Boland, J. W. (2006). The economic contribution of seagrass to secondary production in South Australia. Ecological Modelling, 196(1–2), 163–172. https://doi.org/10.1016/j.ecolmodel.2006.02.030
Mitsch, W. J., Cronk, J. K., Wu Xinyuan, & Nairn, R. W. (1995). Phosphorus retention in constructed freshwater riparian marshes. Ecological Applications, 5(3), 830–845. https://doi.org/10.2307/1941991
Pascual, M., Borja, A., Franco, J., Burdon, D., Atkins, J. P., & Elliott, M. (2012). What are the costs and benefits of biodiversity recovery in a highly polluted estuary? Water Research, 46(1), 205–217. https://doi.org/10.1016/j.watres.2011.10.053
Pinto, R., Patrício, J., Neto, J. M., Salas, F., & Marques, J. C. (2010). Assessing estuarine quality under the ecosystem services scope: Ecological and socioeconomic aspects. Ecological Complexity, 7(3), 389–402. https://doi.org/10.1016/j.ecocom.2010.05.001
Rahman, S. A., & Yaakub, S. M. (2020). Socio-economic valuation of seagrass meadows in the Pulai River Estuary, Peninsular Malaysia, through a wellbeing lens. Marine and Freshwater Research, 71(8), 877. https://doi.org/10.1071/MF19208
Schroeder, W. W., Dinnel, S. P., & Wiseman, W. J. (2011). Salinity structure of a shallow, tributary estuary (pp. 155–171). https://doi.org/10.1029/ce040p0155
Sigleo, A. C., Mordy, C. W., Stabeno, P., & Frick, W. E. (2005). Nitrate variability along the Oregon coast: Estuarine-coastal exchange. Estuarine, Coastal and Shelf Science, 64(2–3), 211–222. https://doi.org/10.1016/j.ecss.2005.02.018
Wiederholt, R., Stainback, G. A., Paudel, R., Khare, Y., Naja, M., Davis, S. E., & Van Lent, T. (2020). Economic valuation of the ecological response to hydrologic restoration in the Greater Everglades ecosystem. Ecological Indicators, 117, 106678. https://doi.org/10.1016/j.ecolind.2020.106678
Windle, J., & Rolfe, J. (2005). Assessing non-use values for environmental protection of an estuary in a great barrier reef catchment. Australasian Journal of Environmental Management, 12(3), 147–155. https://doi.org/10.1080/14486563.2005.10648645
Wu, X., & Mitsch, W. J. (1998). Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands, 18(1), 9–20. https://doi.org/10.1007/BF03161438
Sediment Ecosystems
Ariza, E., Ballester, R., Rigall-I-Torrent, R., Saló, A., Roca, E., Villares, M., Jiménez, J. A., & Sardá, R. (2012). On the relationship between quality, users’ perception and economic valuation in NW Mediterranean beaches. Ocean and Coastal Management, 63, 55–66. https://doi.org/10.1016/j.ocecoaman.2012.04.002
Barton, D. N., Navrud, S., Bjørkeslett, H., & Lilleby, I. (2010). Economic benefits of large-scale remediation of contaminated marine sediments-a literature review and an application to the Grenland fjords in Norway. In Journal of Soils and Sediments (Vol. 10, Issue 2, pp. 186–201). Springer. https://doi.org/10.1007/s11368-009-0158-x
Cesar, H. S. J., Öhman, M. C., Espeut, P., & Honkanen, M. (2000). Economic Valuation of an Integrated Terrestrial and Marine Protected Area: Jamaica’s Portland Bight. In Collected Essays on the Economics of Coral Reefs (pp. 203–214). https://www.researchgate.net/publication/236628219
Chan, F., Barth, J. A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W. T., & Menge, B. A. (2008). Emergence of anoxia in the California current large marine ecosystem. In Science (Vol. 319, Issue 5865, p. 920). American Association for the Advancement of Science. https://doi.org/10.1126/science.1149016
De Wit, R., Rey-Valette, H., Balavoine, J., Ouisse, V., & Lifran, R. (2017). Restoration ecology of coastal lagoons: new methods for the prediction of ecological trajectories and economic valuation. Aquatic Conservation: Marine and Freshwater Ecosystems, 27(1), 137–157. https://doi.org/10.1002/aqc.2601
Grigalunas, T. A., & Opaluch, J. J. (1989). Managing contaminated marine sediments. Economic considerations. Marine Policy, 13(4), 318–333. https://doi.org/10.1016/0308-597X(89)90017-1
Hanley, N., Hynes, S., Patterson, D., & Jobstvogt, N. (2015). Economic Valuation of Marine and Coastal Ecosystems: Is it currently fit for purpose? Journal of Ocean and Coastal Economics, 2(1). https://doi.org/10.15351/2373-8456.1014
Harrington, J., Murphy, J., Coleman, M., Jordan, D., Debuigne, T., & Szacsuri, G. (2016). Economic modelling of the management of dredged marine sediments. Geology, Geophysics & Environment, 42(3), 311. https://doi.org/10.7494/geol.2016.42.3.311
Huang, J. C., Poor, P. J., & Zhao, M. Q. (2007). Economic valuation of beach erosion control. Marine Resource Economics, 22(3), 221–238. https://doi.org/10.1086/mre.22.3.42629556
Laing, S., Schleyer, M., & Turpie, J. (2020). Ecosystem service values of sediment generation and entrapment by marginal coral reefs at Sodwana Bay, South Africa. African Journal of Marine Science, 42(2), 199–207. https://doi.org/10.2989/1814232X.2020.1771415
Lee, J. (2015). Economic valuation of marine litter and microplastic pollution in the marine environment: An initial assessment of the case of the United Kingdom Growth Strategies of Sub-Saharan Africa View project Economic valuation of marine litter and microplastic pol. https://www.researchgate.net/publication/283680054
Marzetti, S., Disegna, M., Koutrakis, E., Sapounidis, A., Marin, V., Martino, S., Roussel, S., Rey-Valette, H., & Paoli, C. (2016). Visitors’ awareness of ICZM and WTP for beach preservation in four European Mediterranean regions. Marine Policy, 63, 100–108. https://doi.org/10.1016/j.marpol.2015.10.005
McLeod, I. M., Boström-Einarsson, L., Creighton, C., D’Anastasi, B., Diggles, B., Dwyer, P. G., Firby, L., Le Port, A., Luongo, A., Martínez-Baena, F., McOrrie, S., Heller-Wagner, G., & Gillies, C. L. (2019). Habitat value of Sydney rock oyster (Saccostrea glomerata) reefs on soft sediments. Marine and Freshwater Research, 126(March), 1–16. https://doi.org/10.1071/MF18197
Sagebiel, J., Schwartz, C., Rhozyel, M., Rajmis, S., & Hirschfeld, J. (2016). Economic valuation of Baltic marine ecosystem services: Blind spots and limited consistency. ICES Journal of Marine Science, 73(4), 991–1003. https://doi.org/10.1093/icesjms/fsv264
Sparrevik, M., & Breedveld, G. D. (2007). From Ecological Risk Assessments to Risk Governance. Evaluation of the Norwegian Management System for Contaminated Sediments. Integrated Environmental Assessment and Management, preprint(2009), 1. https://doi.org/10.1897/ieam_2009-049.1
Sutinen, J. G., Clay, P., Dyer, C. L., Edwards, S. F., Gates, J., Grigalunas, T. A., Hennessey, T., Juda, L., Kitts, A. W., Logan, P. N., Poggie, J. J., Rountree, B. P., Steinback, S. R., Thunberg, E. M., Upton, H. F., & Walden, J. B. (2005). 3 A framework for monitoring and assessing socioeconomics and governance of large marine ecosystems. In Large Marine Ecosystems (Vol. 13, Issue C, pp. 27–81). Elsevier Ltd. https://doi.org/10.1016/S1570-0461(05)80027-8
Walker, T. R., Maclean, B., Appleton, R., Mcmillan, S., & Miles, M. (2013). Cost-Effective Sediment Dredge Disposal Options for Small Craft Harbors in Canada. Remediation, 23(4), 123–140. https://doi.org/10.1002/rem.21371
Wesławski, J. M., Andrulewicz, E., Kotwicki, L., Kuzebski, E., Lewandowski, A., Linkowski, T., Massel, S. R., Musielak, S., Olańczuk-Neyman, K., Pempkowiak, J., Piekarek-Jankowska, H., Radziejewska, T., Rózyński, G., Sagan, I., Skóra, K. E., Szefler, K., Urbański, J., Witek, Z., Wołowicz, M., … Zarzycki, T. (2006). Basis for a valuation of the Polish Exclusive Economic Zone of the Baltic Sea: Rationale and quest for tools. In Oceanologia (Vol. 48, Issue 1, pp. 145–167). -. http://www.iopan.gda.pl/oceanologia/
Open Ocean Ecosystems
Alkalay, R., Pasternak, G., & Zask, A. (2007). Clean-coast index-A new approach for beach cleanliness assessment. Ocean and Coastal Management, 50(5–6), 352–362. https://doi.org/10.1016/j.ocecoaman.2006.10.002
Bartkowski, B., Lienhoop, N., & Hansjürgens, B. (2015). Capturing the complexity of biodiversity: A critical review of economic valuation studies of biological diversity. Ecological Economics, 113, 1–14. https://doi.org/10.1016/j.ecolecon.2015.02.023
Beaumont, N. J., Austen, M. C., Mangi, S. C., & Townsend, M. (2008). Economic valuation for the conservation of marine biodiversity. Marine Pollution Bulletin, 56(3), 386–396. https://doi.org/10.1016/j.marpolbul.2007.11.013
Berman, M. (2006). Modeling spatial choice in ocean fisheries. Marine Resource Economics, 21(4), 375–394. https://doi.org/10.1086/mre.21.4.42629522
Börger, T., Beaumont, N. J., Pendleton, L., Boyle, K. J., Cooper, P., Fletcher, S., Haab, T., Hanemann, M., Hooper, T. L., Hussain, S. S., Portela, R., Stithou, M., Stockill, J., Taylor, T., & Austen, M. C. (2014). Incorporating ecosystem services in marine planning: The role of valuation. Marine Policy, 46, 161–170. https://doi.org/10.1016/j.marpol.2014.01.019
Fisher, A., Hanemann, M., Harte, J., & Ellis, G. (n.d.). Economic Valuation of Aquatic Ecosystems Asian Energy Security View project Alpine-Treeline Warming Experiment View project. Retrieved August 17, 2020, from https://www.researchgate.net/publication/267681070
Galparsoro, I., Borja, A., & Uyarra, M. C. (2014). Mapping ecosystem services provided by benthic habitats in the European North Atlantic Ocean. Frontiers in Marine Science, 1(JUL), 23. https://doi.org/10.3389/fmars.2014.00023
Gibbs, M. T. (2015). Coastal climate risk and adaptation studies: The importance of understanding different classes of problem. Ocean and Coastal Management, 103, 9–13. https://doi.org/10.1016/j.ocecoaman.2014.10.018
Gobin, C., & Da Fonseca, G. A. B. (2014). Deep-sea protection: Coordinate efforts. In Science (Vol. 344, Issue 6190, p. 1352). American Association for the Advancement of Science. https://doi.org/10.1126/science.344.6190.1352
Kildow, J. T., & McIlgorm, A. (2010). The importance of estimating the contribution of the oceans to national economies. Marine Policy, 34(3), 367–374. https://doi.org/10.1016/j.marpol.2009.08.006
Ledoux, L., & Turner, R. K. (2002). Valuing ocean and coastal resources: A review of practical examples and issues for further action. Ocean and Coastal Management, 45(9–10), 583–616. https://doi.org/10.1016/S0964-5691(02)00088-1
Ledoux, L., & Turner, R. K. (2002). Valuing ocean and coastal resources: A review of practical examples and issues for further action. Ocean and Coastal Management, 45(9–10), 583–616. https://doi.org/10.1016/S0964-5691(02)00088-1
Liu, S., Stern, D. I. (2008). A Meta-Analysis of Contingent Valuation Studies in Coastal and Near-Shore Marine Ecosystems. Mpra, 11608, 36 pp. http://mpra.ub.uni-muenchen.de/11608/
Mengerink, K. J., Van Dover, C. L., Ardron, J., Baker, M., Escobar-Briones, E., Gjerde, K., Koslow, J. A., Ramirez-Llodra, E., Lara-Lopez, A., Squires, D., Sutton, T., Sweetman, A. K., & Levin, L. A. (2014). A call for deep-ocean stewardship. In Science (Vol. 344, Issue 6185, pp. 696–698). American Association for the Advancement of Science. https://doi.org/10.1126/science.1251458
Milon, J. W., & Alvarez, S. (2019). The elusive quest for valuation of coastal and marine ecosystem services. In Water (Switzerland) (Vol. 11, Issue 7, p. 1518). MDPI AG. https://doi.org/10.3390/w11071518
Murillas-Maza, A., Virto, J., Gallastegui, M. C., González, P., & Fernández-Macho, J. (2011). The value of open ocean ecosystems: A case study for the Spanish exclusive economic zone. Natural Resources Forum, 35(2), 122–133. https://doi.org/10.1111/j.1477-8947.2011.01383.x
Pendleton, L., Atiyah, P., & Moorthy, A. (2007). Is the non-market literature adequate to support coastal and marine management? Ocean and Coastal Management, 50(5–6), 363–378. https://doi.org/10.1016/j.ocecoaman.2006.11.004
Raheem, N., Colt, S., Fleishman, E., Talberth, J., Swedeen, P., Boyle, K. J., Rudd, M., Lopez, R. D., Crocker, D., Bohan, D., O’Higgins, T., Willer, C., & Boumans, R. M. (2012). Application of non-market valuation to California’s coastal policy decisions. Marine Policy, 36(5), 1166–1171. https://doi.org/10.1016/j.marpol.2012.01.005
Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R., Escobar, E., Levin, L. A., Menot, L., Rowden, A. A., Smith, C. R., & van Dover, C. L. (2011). Man and the last great wilderness: Human impact on the deep sea. PLoS ONE, 6(8), e22588–e22588. https://doi.org/10.1371/journal.pone.0022588
Ressurreição, A., Gibbons, J., Dentinho, T. P., Kaiser, M., Santos, R. S., & Edwards-Jones, G. (2011). Economic valuation of species loss in the open sea. Ecological Economics, 70(4), 729–739. https://doi.org/10.1016/j.ecolecon.2010.11.009
Rodrigues, L. C., van den Bergh, J. C. J. M., & Ghermandi, A. (2013). Socio-economic impacts of ocean acidification in the Mediterranean Sea. Marine Policy, 38, 447–456. https://doi.org/10.1016/j.marpol.2012.07.005
Samhouri, J. F., Lester, S. E., Selig, E. R., Halpern, B. S., Fogarty, M. J., Longo, C., & McLeod, K. L. (2012). Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere, 3(5), art41. https://doi.org/10.1890/es11-00366.1
Schaafsma, M., & Turner, R. K. (2015). Valuation of Coastal and Marine Ecosystem Services: A Literature Review (pp. 103–125). Springer, Cham. https://doi.org/10.1007/978-3-319-17214-9_6
Shen, Z., Wakita, K., Oishi, T., Yagi, N., Kurokura, H., Blasiak, R., & Furuya, K. (2015). Willingness to pay for ecosystem services of open oceans by choice-based conjoint analysis: A case study of Japanese residents. Ocean and Coastal Management, 103, 1–8. https://doi.org/10.1016/j.ocecoaman.2014.10.016
Söderqvist, T., Eggert, H., Olsson, B., & Soutukorva, Å. (2005). Economic valuation for sustainable development in the Swedish coastal zone. Ambio, 34(2), 169–175. https://doi.org/10.1579/0044-7447-34.2.169
Torres, C., & Hanley, N. (2017). Communicating research on the economic valuation of coastal and marine ecosystem services. Marine Policy, 75, 99–107. https://doi.org/10.1016/j.marpol.2016.10.017
Vassilopoulos, A., Koundouri, P., Vassilopoulos, A., & Koundouri, P. (2017). Valuation of Marine Ecosystems. In Oxford Research Encyclopedia of Environmental Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389414.013.529
Global Ocean Accounts Partnership, 2019